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ABSTRACT 

The first study of this dissertation is focused on studies of the classical dynamics 

and associated rates of isomerization and dissociation of isolated HO2.   Comparisons are 

made between the three potential energy surfaces (PESs) used in these studies. The 

intramolecular vibrational energy redistribution (IVR) at energies above and below the 

threshold of isomerization is slow, especially for O–O stretch excitations, consistent with 

the regularity in the surfaces-of-section. The slow IVR rates lead to mode-specific effects 

that are prominent for isomerization and modest for unimolecular dissociation to H + O2.  

Even with statistical distributions of initial energy, slow IVR rates result in 

bi-exponential decay for isomerization, with the slower rate correlated with slow IVR 

rates for O–O vibrational excitation. The calculated IVR results for all three PESs are 

reasonably well represented by an analytic, coupled three-mode energy transfer model.  

 The second study of this thesis is focused on the effects of pressure on the 

relaxation of the HO2 embedded in a dense gas environment.  A method of simulating the 

radical in an argon bath is proposed and validated.  The time-dependent decay of 

vibrational energy is found to be bi-exponential for all of the simulated pressures. The 

relaxation rates at low pressures extrapolate poorly to the high-pressure results, with a 

turnover in the rate constants occurring at intermediate pressures.  The effects of finite 

size on the simulation are investigated. Comparisons to studies with similar findings and 

additional considerations for understanding this behavior are discussed.
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I.  Introduction 

The interplay of theory and experimentation has been a crucial engine advancing 

the understanding the mechanisms of unimolecular reactions.1  The progression of 

theories describing unimolecular reactions are discussed in review articles2 and in several 

monographs.3  The Lindemann mechanism4 is the foundation on which more recent 

theories are built upon.  An example of this mechanism is the following 

MA  ⇄ MA *         (1) 

and 

BA * ,          (2) 

where A is a reactant, A* is a vibrationally excited reactant, B is a product and M is a 

buffer gas.  The gist of the theory is that a chemical species gains and loses energy by 

collisions with the surrounding medium which can lead to a reaction occurring.  At low 

pressures this is a bimolecular process, and at higher pressures the process in Eq. 2 

becomes the rate determining step of the mechanism.  However, this mechanism only 

qualitatively predicts the correct behavior of the reaction rate as a function of pressure.3  

The issue is that the internal state of the reactant must be addressed for better accuracy.  

The theories of Hinshelwood,5 followed by those of Ramsberger, Rice,6 and Kassel7 

(RRK) and Slater8 all attempted to resolve the issue of how the internal energy of the 

chemical species affects the rate of reaction.  These earlier theories provided a foundation 

for the extensions of RRK proposed by Marcus,9 which has become known as RRKM 

theory.  RRKM theory extends the ideas of RRK by incorporating a quantum-statistical 

mechanical description of the energization of a reactant species and transition state 

theory1,3 to describe the conversion of the energized reactant to a product state.  A key 
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assumption is that localization of energy in a vibrational degree of freedom is 

unimportant as long as the intramolecular redistribution of energy (IVR) amongst the 

vibrational modes is fast relative to the timescale of the reaction.  An expectation of the 

assumption of fast IVR is that unimolecular reactions should occur in a probabilistic 

manner and where the reaction of a chemical species is independent of its initial state.  A 

brief aside is necessary to discuss the nature of energy transfer amongst vibrational 

modes.  

 The first computational studies of nonlinear dynamics performed by Fermi, Pasta, 

and Ulam10 (FPU) on the equipartion of energy in a one-dimensional anharmonic chain 

of oscillators yielded results that surprised the authors.  The simulation consisted of 

exciting a single vibrational mode in a one-dimensional chain of oscillators and 

propagating the equations of motion.  The intent was to study how nonlinear forces 

affected the transfer of energy to the higher vibrational modes of the system.  However, 

they found that on a long time-scale, there was non-ergodic behavior with an almost 

complete relocalization of energy in the excited mode, which contradicted the expected 

equilibration of energy amongst the modes of the system.  Additional work by Tuck and 

Menzel11 showed that this long-time periodicity in the FPU work was in fact real and was 

not due to numerical error.  Ford12 showed the lack of relaxation in the FPU problem was 

due to the absence of resonances.  The effect of resonance conditions on ergodic behavior 

in trajectories is generalized in the Kolmogorov, Arnol’d, and Moser theorem,13a,22 which 

states that under a small perturbation periodic, or quasi-periodic motion in phase space 

will persist unless resonant conditions occur.  This aside on nonlinear dynamics ties 

directly to a question that has been posed by others:  Does the flow of energy amongst the 
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vibrational modes of a molecular system affect the rate of reaction?2(b),13  The possible 

connection between non-statistical dynamics and the unimolecular reactivity motivated 

early classical trajectory studies of model tri-atomics by Bunker.14  He found that 

frequency mismatches between vibrational modes due to mass differences could cause 

non-random lifetimes in the dissociating species.  Bunker and Hase15 further defined non-

statistical lifetimes by differentiating between effects due to localization of energy and 

effects due to the phase space of chemical species being metrically decomposable.   

Some expectations of the dynamics of HO2 can be guided by observations that 

others have made while studying H2O2.  There are numerous studies16 which have 

furthered our understanding of this system; however, for brevity we focus on a few of the 

key conclusions. First, the motion of the HO is relatively decoupled from the other 

degrees of freedom of the system. Second, there is evidence of slow energy flow out of 

an excited HO mode that has been prepared in an overtone state.  This slow energy flow 

could contribute to non-exponential population decay of a sample. Finally, participation 

of the lower-frequency modes and rotational motion along an axis defined by the O-O 

bond has the effect of increasing the rate of IVR.  While the addition of a hydrogen atom 

to HO2 leads to considering the motion of three more internal degrees of freedom, the 

vibrational frequencies of these two species share similarities, so one would expect some 

parallels between the intramolecular dynamics of these two species. More specifically, 

slow energy transfer between the high frequency and low frequency modes. 

The first part of this dissertation is tied to the simplified reaction shown in Eq. 2, 

namely how does the unimolecular reaction of HO2 occur?  Are the dynamics in 

agreement with statistical expectations, with fast energy transfer among the vibrational 
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modes?  What role does isomerization play in the energy transfer?  Are there signatures 

of mode selectivity in the unimolecular dissociation of the radical?  These questions are 

the subject of the research in Chapter III of this dissertation. 

The second part of this dissertation is devoted to the study of the collisional 

deactivation of the vibrationally excited species shown in Eq. 1.  The isolated binary 

collision approximation (IBC)17 is a common assumption made in modeling the 

deactivating effect of collisions on a vibrationally excited species.  Under this 

approximation, the time-dependent deactivation process is treated as a series of 

uncorrelated collisions with the bath gas.  This simplified model allows for the 

calculation of the relaxation time of a solute from the product of an energy transference 

probability with a solute-bath gas collision frequency.  The energy transference 

probability is typically based on gas-phase results, and the collision frequency is taken 

from a hard-sphere model.  A general result of the IBC approximation is a linear 

dependence of the solute relaxation time constants with the bath density.  Evidence for 

the general applicability of IBC is mixed, with favorable agreement for some systems,18 

whereas anomalous behavior is seen in others.19  Given the importance of HO2 in 

pressure-dependent combustion, we investigate the relaxation of a vibrationally excited 

radical in a dense Ar bath.  We also examine the applicability of the IBC approximation 

under conditions of extreme pressure.  These investigations are the focus of chapter IV.  

The development of the code used in simulating HO2 led to preliminary work on 

general methods and considerations of molecular dynamics (MD).  This work does not 

directly fit in other chapters, but it was useful in motivating the work on HO2 and is 

discussed in chapter II.  The conclusions of the dissertation are given in chapter V. 
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II. Considerations in Trajectory Calculations 

 While the methods in an MD simulation can become quite involved, the technique 

can be broken into a simple set of steps: (1) definition of the potential energy surface; (2) 

selection of initial conditions; (3) integrating the equations of motion; (4) sampling and 

analysis of physical properties and end-test criteria.  These steps are shown below for the 

simple case of trajectories integrated on the Hénon-Heiles20 potential.   Extension of these 

steps to more complicated simulations is also discussed.  The discussion of this chapter 

sets the stage for the research conducted in completing this dissertation.   

A. The Hénon-Heiles Hamiltonian: An Illustrative Example 

Defining a potential energy surface (PES) is the first step in an MD simulation.  

The purpose of the PES is to represent the interactions of the nuclei that compose the 

chemical species being studied.  Originally the Hénon-Heiles potential was developed as 

a model for understanding cosmological motion,20 but the simple form and complex 

dynamics of this potential has resulted in its use in understanding chemical dynamics.21  

The Hénon-Heiles potential is the following:  

 3222

3
1)(

2
1),( yyxyxyxV  ,      (3) 

where x and y are Cartesian coordinates. This potential is two harmonic oscillators with 

cubic anharmonic coupling and anharmonicity in the y coordinate.  An illustration of the 

potential can be seen in Fig. 1.  The minimum of the potential is the central blue region.  

The coloration of the figure changes with progressively higher potential energy from 

green to yellow and finally red.  The extremely high-energy regions, which are of little 

dynamical importance, are shown as white.  The potential has three-fold symmetry with 
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the exit channels diverging to infinity both spatially and energetically.  The threshold for 

a dissociative trajectory is ≈1/6 energy units and trajectories with energy beneath that 

energy threshold display behavior characteristics that range from quasi-periodic to 

irregular. 

 

Figure 1 Hénon-Heiles potential plotted in Cartesian coordinates. The black lines 
indicate planes of intersection that were used in calculating surfaces-of-section.   

 

The initial conditions for these illustrative tests were selected with a simple Monte 

Carlo scheme.  The first step involves selecting two pseudo-random numbers uniformly 

distributed on [-1,1] as the initial-Cartesian coordinates.  The potential is evaluated at 

these points to determine if they lie below the specified total energy.  If the potential 

energy is above the specified threshold, the points are then discarded and a new set of 

points is sampled; this process is repeated until the energy criterion is satisfied.  Once the 

energy criterion is met, then a set of conjugate momenta is selected that satisfies T = H-V 

where T is the kinetic energy, H is the total energy and V is the potential.  The kinetic 
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energy is then divided between the two oscillators using TPx 2  and 

)1(2  TPy , where ζ is a pseudo-random number uniformly distributed on [0,1], Px 

is the momentum in the x direction and Py  is the momentum in the y direction.  The signs 

of the momenta are randomized and a trajectory is initiated.  This trajectory is then 

integrated for some desired length of time, or until a termination criterion, such as 

dissociation, is satisfied.  The trajectory terminates when a predefined time or event 

occurs and the initial conditions of the next trajectory are selected.  The process is 

repeated until a group, or ensemble, of trajectories is completed.  During the simulation, 

the trajectory can be analyzed on the fly with ensemble averages being calculated at the 

end of the simulation, or phase points can be stored for subsequent post-simulation 

analysis.  Collecting the full phase space information has the advantage that new analyses 

can be considered without rerunning trajectories.  The main disadvantage of storing the 

entire phase space information of a simulation is the dependence on having sufficient 

disk space available and preventing data corruption.  The on-the-fly analysis has the 

advantage of requiring minimal disk space and data corruption issues, but new analysis 

can require rerunning simulations.  The complex dynamics of the Hénon-Heiles potential 

has resulted in its extensive study, particularly with regard to the transition from quasi-

periodic dynamics to irregular dynamics where the phase space of the system is explored 

in a much more chaotic manner.  Figure 2 contains two representative trajectories which 

are representative of quasi-periodic (frame a) and irregular dynamics (frame b).   
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Figure 2.  Representative trajectories of quasi-periodic and irregular trajectories: (a) 
Quasi-periodic trajectory with a total energy of 0.05 energy units; (b) irregular trajectory 
with a total energy of 0.16 energy units; (c) and (d) the X surface-of-section; (e) and (f) 
the Y surface-of-section. 

 Now imagine attempting to classify an ensemble of the trajectories.  Examining 

plots of individual trajectories would be inefficient, and understanding the behavior of the 

ensemble would be difficult.  A slight change in perspective can provide some clarity 

shown, as in Fig. 2c, 2d, 2e and 2f by using Poincaré surfaces-of-section (SOS).  An SOS 

plot is calculated by first selecting a plane defined by one of the coordinates in 

configuration space and recording the second coordinate and conjugate momentum when 
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a trajectory crosses the surface in one direction.  A surface-of-section is a common 

mapping technique22 in the analysis of dynamical systems with low dimensionality.  

Higher dimensional systems often require more involved analysis.13a  An SOS plot 

provides a striking means of showing recurrence, or periodicity, in an group of 

overlapping, complicated trajectories.  Figure 3 shows how the surfaces-of-section for an 

ensemble of trajectories change as the energy of the system increases.  As the energy of 

the system increases, the amount of accessible phase space volume grows and the regions 

of structure begin to disappear as the trajectories become more irregular. 
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Figure 3. Surfaces-of-section from dynamics on the Hénon-Heiles potential that show the 
progression of phase space expansion and exploration with increasing energy. The 
trajectories were integrated for 1000 time units. Each frame is the result of intersections 
calculated from ensembles of 100 trajectories per frame. The planes of intersection are 
defined in Fig. 1: (a) and (b) the total energy is 0.042; (c) and (d) the total energy is 
0.084; (e) and (f) the total energy is 0.125; (g) and (h) the total energy is 0.166. 
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B. Potential Energy Surfaces 

While a full quantum mechanical solution for the motion of both the electrons and 

the nuclei is desired, it is often cost prohibitive.  But, to a good approximation, an 

acceptable solution can often be obtained.  The good approximation is otherwise known 

as the Born-Oppenheimer approximation,23 where the general idea is that the motion of 

the electrons can be separated from the motion of the nuclei by virtue of the vastly 

differing masses of these two subatomic particles.  In other words, the motion of the 

electrons is so fast that one can conceive the electrons instantaneously adjusting for the 

motion of the nuclei, and that the nuclei move on a surface that is defined by energies 

obtained by solving the electronic structure of the system.  However, given the 

computational cost of electronic structure calculations, it is common practice to construct 

model systems with analytic functions describing the interactions between the nuclei.24  

These analytic functions can be parameterized to reflect the known information on the 

chemical system, such as the thermochemistry and vibrational frequencies of the system. 

The analytic functions parameterized with experimental and ab initio data may 

not be sufficient to represent the complex topography of the true PES.  But there are two 

different means of obtaining a more realistic PES.  With the improvement in computing 

power and electronic structure codes, there has been development of a method known as 

“Direct Dynamics.”25  With Direct Dynamics, the electronic structure problem is solved 

on the fly during a trajectory.  The primary issue with this technique is the sheer 

computational cost of solving the electronic structure problem for tens of thousands of 

force evaluations in a single trajectory.  This cost is compounded by the need to simulate 

hundreds, if not thousands, of trajectories to obtain converged averages.  The alternative 
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to direct dynamics is to save the output of electronic structure calculations and interpolate 

it using a flexible function or polynomial.26  However, interpolation of low-symmetry 

systems that contain four or more atoms suffers from the “curse of dimensionality,”27 in 

that a large number of data points will be required to fit a high-dimension PES accurately.  

Another issue with interpolation is that the computational cost grows with the complexity 

of the function being used to fit the surface.28 

In the context of this dissertation and the HO2 radical, we are fortunate to have 

access to interpolated potentials that were developed by others.54,56  We use these PESs to 

study the phenomena in which we are interested, which are the dynamics and reactivity 

of the HO2 radical.  The description of the potential energy surfaces of this radical used in 

this dissertation is provided in Ch. III. 

C. Selection of Initial Conditions 

 The selection of initial conditions for trajectories is very much dependent on the 

statistical ensemble and what one wishes to learn from the trajectories.  Whatever the 

phenomenon of interest, the Monte Carlo method29,30,32 is a common means for selecting 

initial conditions  Typically, one uses a pseudo-random number generator to select 

random numbers distributed on an interval between 0 and 1.  These numbers can then be 

weighted, or scaled, to the variables needed to describe the initial state of the system.  For 

NPT (constant temperature, pressure, and number of particles), and NVT (constant 

temperature, volume, and number of particles) simulations,30 the initial conditions 

generally consist of selecting initial coordinates and momenta and then running a 

sufficiently long trajectory with a thermostat or barostat30 to obtain the desired physical 

state.  The sort of initial conditions that are of greatest use in studying unimolecular 
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dynamics are ones that correspond to the NVE ensemble (constant energy, volume and 

number of particles).  This ensemble is attractive because there are general conservation 

principles: energy, total angular momentum, and linear momentum, which can be used to 

assess the accuracy of the simulation.  But most important, the equations of motion are 

not modified as they would be with a thermostat or a barostat, so in the classical limit 

where quantum effects are assumed to be minimal, a trajectory calculated on an accurate 

PES should reproduce the dynamics, and the ensemble averages calculated by trajectories 

would agree with the expectation values derived from quantum mechanics.  There has 

been considerable investment of time and effort in the development of the algorithms 

used to select initial conditions that correspond to the NVE ensemble, so we will focus on 

the ones most relevant to this study. 

1. Mode-Specific Initial Conditions 

 The ability to localize energy in a particular degree of freedom is of interest 

inasmuch as it provides a means of studying how energy relaxes amongst the various 

degrees of freedom.  These methods have been discussed in great detail in numerous 

reviews24 on classical simulations and are only briefly described here.  The simplest form 

of approximating the vibrational degrees of freedom is to picture them as normal modes.  

The normal mode approximation provides a general means of separating the vibrational 

motion into discrete parts.  However, this method does have limitations: the vibrational 

motion is assumed to be harmonic and there is no accounting for the anharmonicity of the 

PES.  The form of a normal mode is 

)cos()( 2/1   tAtq ii ,        (4) 
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where qi is the ith normal mode, Ai is the amplitude,  is the force constant and  is the 

phase of the oscillator.  The first step in setting the mode-specific initial conditions is to 

solve the eigenvalue equation of the normal modes for the eigenvalues and vectors.  This 

is done by calculating the Hessian, or second derivative matrix of the potential at a 

stationary point on the PES, such as a minimum on the surface.  Detailed discussions of 

normal mode analysis and spectroscopy can be found in a classic text.31  The eigenvalue 

equation is then solved, typically with readily available codes.32  The eigenvector matrix 

is used in the linear transformation between normal coordinates and Cartesian 

coordinates during the selection of initial conditions, but can also find use in the analysis 

of the trajectory.  The selection of initial conditions begins by calculating the total energy 

summed from the individual mode contributions. Then the phase of each oscillator is 

sampled independently using  

)2/sin()(   tee qqqq ,      (5) 

where  qe is the equilibrium value of the normal mode and qt is the inner turning point 

and  is a pseudo-random number. The potential energy of the surface is then calculated 

with the sampled phase and is accepted if the potential energy of the displacement is less 

than the specified energy of the mode.  If the potential energy is greater than the specified 

mode energy then displacement is rejected and the phase is resample until an acceptable 

displacement is found.  After independently sampling the phase of all of the modes, the 

normal mode velocities and displacements are added to the stationary point at which the 

normal mode analysis was done.  The resultant sum of the coordinate and momentum 

vectors may result in a non-zero angular momentum, which Hase et al.33 showed can be 

iteratively removed to enforce a requirement of zero angular momentum if it is desired.  
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The use of normal mode excitations has found considerable use in studying IVR.  A 

complementary method of localizing energy in a particular mode, similar to normal mode 

excitation can be done using a local mode model,24 where the excitation energy is 

projected along a bond vector with the assumption of the potential interaction being 

harmonic, or Morse-like.  The advantage of a local mode excitation is that the 

anharmonicity of the potential in the local mode is taken into account in the selection of 

the initial conditions. 

2. Statistical Initial Conditions  

The limitation of assuming a normal or local mode picture has led to development 

of alternative means of selecting initial conditions for the microcanonical ensemble.  The 

question of efficient and accurate selection of initial conditions for the microcanonical 

ensemble has been extensively studied by others.34,35  The initial conditions of the HO2 

radical were selected using efficient microcanonical sampling (EMS) with no restriction 

to angular momentum or with the angular momentum restricted to zero.  The procedures 

consists of a random walk where the Cartesian coordinates of the radical are randomly 

changed  

qnew = qold + Δ(,       (6) 

where qnew, and qold are the “old” and “new” x, y, or z component of the Cartesian 

coordinates of the atoms and ζ is a pseudo-random number on the range 0 to 1 and Δ is a 

maximum displacement.  The acceptance of a new displacement with no restriction to 

angular momenta is assigned the following34(b) weight 

2/)53()]([),(  NqVEJEW ,      (7) 
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 and the corresponding weight for J = 0 is34(a) 

2/)83()]([1),(  N

CBA

qVE
III

JEW ,    (8) 

where Ia, Ib, Ic are the principal moments of inertia, E is the desired energy, V is the 

current potential energy, and N is the number of atoms in the system.  A trial move is 

accepted if the weight of the new state is greater than weight of the current configuration.  

If the trial weight is less than or equal to the current weight, then a ratio of the trial 

weight and the current weight is compared to a pseudo-random number sampled from a 

uniform distribution of [0,1].  If the ratio of weights is greater than the selected pseudo-

random number the trial move is then accepted; otherwise, it is rejected and a new trial 

displacement is sampled. At the end of the random walk, a set of velocities is selected 

and scaled to ensure that the desired initial internal energy ED is obtained. The 

momentum scaling is  

VH
VEPP D

ON



 ,       (9) 

where H is the Hamiltonian, and PO and PN are, respectively, the old and new x, y, or z 

momenta of the atoms in the radical.  The final geometric configuration of system at the 

end of the Markov walk was used as the starting point for subsequent random walks in 

the ensemble.  

D. Integration of the equations of motion 

After selecting the initial conditions, the next task is integration of the equations 

of motion.  Typically a closed form solution to the equations of motion does not exist and 

a numerical solution is required.  Numerical integration is a rich and varied field and has 
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been deeply studied in the context of MD simulations.36,37  While no development of 

integration methods occurred in this dissertation, coding and testing of existing 

algorithms did happen, so it is worthwhile to consider the range of integration algorithms 

available and the respective strengths and weakness of these algorithms. 

In MD simulations, the equations of motion solved are typically Hamilton’s 

equations since these equations are valid in any coordinate frame and the solving a set of 

first-order equations is generally less complicated than solving a set of second-order 

equations.  Hamilton’s equations are the following  

 
dq
dHp 

          (10) 

and 

 
dp
dHq 



,         (11) 

where 


p  and 


q are the time derivatives of the momenta and coordinates, respectively, 

and H is the Hamiltonian, which is a function of p and q.  Typically, the integration 

coordinates are selected to be in the fixed lab-frame Cartesian coordinates, a choice that 

simplifies the expression of the kinetic energy. This expression can be complicated if the 

system is described in terms of in generalized coordinates.  The issue of the potential 

energy being a function of internal coordinates is dealt with by using the chain rule to 

transform the gradients from internal coordinates to the Cartesian, fixed lab-frame 

coordinates.  The result is a set of 6N first-order equations that must be solved to 

propagate the trajectory.  
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There are numerous integration schemes37 that have been devised to solve sets of 

differential equations.  These schemes are based on finite steps along the function or 

system of functions that is being integrated.  These finite steps are used to extrapolate to 

the next integration point.  The finite nature of the integration process means that a stable 

integration in MD is determined by having a smooth differentiable potential, since the 

gradient of potential is used in Eq. (10) to determine how the momentum changes.  

Changes in the momenta in turn determine the next displacement in configuration space 

at which the potential and gradient are evaluated, and the gradient in turn affects the 

momenta, and so the process repeats.  Continuing this stepwise process is known as 

integrating a trajectory.  The largest cost of an MD simulation is typically found in the 

evaluation of the forces, which can become laborious if the evaluation is done by finite 

difference or if the PES is complex, as in direct dynamics or interpolated surfaces.  Even 

a large number of pairwise interactions to be evaluated can result in unfavorable scaling 

of the computational cost of a problem.30  Ultimately, this means that minimizing the 

number or cost of gradient evaluations per integration step leads to a more efficient 

simulation.  A simple means of decreasing the computational cost of a trajectory is to use 

a larger integration step size, so that fewer integration steps are required to simulate some 

time interval; however, but care must be taken because larger step sizes can increase the 

effect of truncation errors .  

The original simulation code (GENDYN),38 which was further developed in this 

research, had the 4th order Runge-Kutta-Gill39 (RKG4) algorithm as the standard 

integration algorithm. This method is attractive because of the relatively high accuracy of 

the method, O(h4), and is self-starting in that the algorithm does not require multiple 
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forward and backward integration steps to calculate the next step.  However, this 

integrator requires four gradient evaluations for a single time step, so direct dynamics or 

some other costly source for gradient information becomes cost prohibitive with 

increased integration time or system size.  

  Numerical errors in integration can easily accumulate and lead to instability in 

the integration.  Pritchard40 discussed the effects of integration step size and finite 

precision on the reproducibility of trajectories on various machines.  One of the findings 

of the study was that while acceptable agreement of ensemble averages across the various 

machines was found, results of individual trajectories could vary substantially due to 

numerical errors.  Care must be taken in considering the errors of finite mathematics that 

can creep into a simulation.  A simple illustration of the issue of cumulative error can be 

seen in Fig. 3. These are trajectories integrated on the Hénon-Heiles potential with a total 

energy of 0.0125 using two different integration methods: RKG4 and velocity Verlet41 

with the same integration step size of 0.1. The total integration time was 1,000,000 time 

units. All of the trajectories were started at the same point in phase space. On a shorter 

timescale, frames (a) and (b) show that the energy drift for the velocity Verlet and RKG4 

integrators is very small for the entire integration time.  However, as the RKG4 trajectory 

is integrated for a much longer time, there is a progressive deterioration of the energy 

conservation.  This deterioration is also reflected in the surfaces-of-section plotted in 

frames (e-h) for the long time trajectories, where the progressive loss of energy 

conservation results in the RKG4 trajectory exploring different regions of phase space. 

The surfaces-of-section were collected over the entire integration time.  Reduction of the 
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integration step size in the case of RKG4 by an order of magnitude results in improved 

energy conservation, but this comes with the additional cost of more force evaluations.  

 

Figure 4. Plots of integration accuracy tests for the velocity Verlet integrator and RKG 
with identical step sizes of 0.1: (a) Energy drift of a velocity Verlet trajectory, (b) same as 
(a) except for a RKG trajectory; (c) Energy drift of a velocity Verlet trajectory plotted in 
(a) for longer timeframe, (d) same as (c) except for a RKG trajectory; (e) Surfaces-of-
section for the X, Px subspace from a velocity Verlet trajectory, (f) same as (e) except for 
RKG trajectory; (g) Surfaces-of-section for the Y, Py subspace from a velocity Verlet 
trajectory; (h) same as (g) except from a RKG trajectory. 

The potential issue of loss of energy conservation does not mean that the RKG 

integrator is not useful, since the order of accuracy for short integrator times is superior to 
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that of the Verlet algorithm.  The stability of the Verlet integration is due to it being part 

of a class of integrators known as symplectic integrators.  A symplectic integrator is one 

that preserves the volume of phase space and the constants of motion of the system.42  

Gray et al.36(a) tested several symplectic integrators and concluded that there is not 

necessarily one integrator that is the best for all applications.   

The inefficient scaling of the RKG4 with system size and force evaluations 

motivated the coding of two additional integrators into GENDYN: one integrator being 

the Adams-Moulton Predictor-Corrector algorithm43 and the other the velocity Verlet. 

Each of these integration methods was coded for a specific use.  The predictor-corrector 

was coded since it has the same order of accuracy as RKG4, which is important for 

detailed energy transfer studies, but only requires one gradient evaluation per integration 

step as opposed to four.  The velocity Verlet was coded for larger systems and longer 

timescales where stable, efficient long time integration becomes important. 

E. Sampling and Analysis 

 The majority of the analysis techniques are discussed in subsequent chapters in 

the context of the research topic.  However, there are a couple of issues that are worth 

discussing, but do not readily fit in the other chapters of this dissertation.  

 Any number of properties can be calculated from a classical trajectory simulation, 

but there is an important caveat that must considered when interpreting simulation 

results.  Individual trajectories can provide mechanistic details, but the meaningful result 

is the ensemble average.  The mean of the ensemble average is extremely important when 

considering the correspondence between classical and quantum mechanics.44  Sewell 
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et al.45 and Guo et al.46 both studied the issue of zero-point energy flow and showed that 

both active and passive constraints on zero point energy result in aphysical dynamics.  

Proton tunneling47 can also be an important quantum effect to consider when studying the 

dynamics of HO2 in the case of isomerization.  A detailed study of this phenomenon is 

beyond the scope of the research in this dissertation, and thus such a study is outlined as a 

proposed future work at the end of chapter III.   

Error estimation in trajectory studies can be done with two different approaches. 

The first approach is to averaging across multiple independent groups of trajectories. This 

approach is time and labor intensive, and fortunately, the second way is more tractable.  

The more tractable approach is known as bootstrap estimation, which was originally 

proposed by Efron.48  The bootstrap procedure consists of randomly resampling the data 

and generating bootstrap data sets, or resampled data sets. The random resampling is 

done through use of a pseudo-random number generator. The resampled data sets are then 

subject to the same analysis as the parent data and resampled parameters are then used to 

calculate statistics that can be used to describe the parent data set.   

We applied the bootstrap method in resampling of trajectory indices to generate 

bootstrapped ensembles of trajectories for analysis.  Our application of the bootstrap 

method in both Chs. III and IV differed from the original bootstrap method.  The first 

difference is that we chose to have the bootstrapped ensembles of trajectories be 

composed of fewer trajectories than the parent trajectory ensemble.  The traditional 

application of the bootstrap involves having the number of points in each resampled data 

set equal to the number of points in the parent data set.  It is well known that the 

magnitude of the statistical error of an average calculated in a trajectory simulation is ≈
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n1 , where n is the number of trajectories in a simulation. This means that bootstrapped 

data composed of smaller subsets of the parent data should provide an upper estimate to 

the error of the simulation.   

 The second difference, which only applies to Ch. IV, is that the bootstrap was 

modified so resampling was done without replacement, to prevent duplicate inclusion of 

a single-trajectory index in an individual, bootstrapped data set.  Although, it is possible 

that a trajectory index could have been included in multiple, independent bootstrapped 

data sets.  This modification to the resampling was done because a trajectory index is just 

a placeholder for an entire, correlated time history.  However, it is not completely clear to 

us if resampling of smaller data subsets without replacement is equivalent to the original 

bootstrap method; consequently, we treat our error bars, in Ch IV, as rough-upper 

estimate of the variance in the data.   
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III. Dynamics and Unimolecular Dissociation of Hydrogen Peroxyl 

Radical   

A. Introduction 

1. Literature 

The hydrogen peroxyl radical HO2 is important in free radical chain propagation and 

termination in combustion reactions.49 Over the past quarter century the bimolecular 

reactions   

H + O2 → HO + O         (12) 

HO + O → H +O2         (13) 

and associated unimolecular dissociation reactions 

HO2* → H + O2,          (14) 

HO2* → HO + O         (15) 

have been the subjects of a number of experimental and theoretical studies. An important 

part of these studies has been potential energy surface (PES) development using ab initio 

data,50,51,52,53,54,55,56 and the use of these PESs for rate calculations. Brandão et al.57 

reviewed these HO2 PESs with the exception of the most recent one by Li et al.56  

We have used classical trajectories to study the fundamental reaction dynamics of 

HO2 because two new PESs are available, both based on accurate, state-of-the-art 

electronic structure theory.  The most recent PES, by Li et al., is an interpolating moving 

least squares (IMLS)28 polynomial surface that constructed from ab initio 

icMRCI+Q58,59,60 results with CBS extrapolation.93  The second PES is the third member 
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of a progression of 3-D cubic-spline-fitted surfaces started by Xu, Xie, Zhang, Lin, and 

Guo53-,54,55,56 (XXZLG).  This PES55 is based on ≈18,000 icMRCI+Q calculations, but 

without CBS extrapolation.  It best represented the experimental vibrational spectroscopy 

of the PESs discussed in the 2009 Brandão et al.57 review.  We contrast the results 

calculated using these recent PESs with those obtained by using the semi-empirical 

double many-body expansion (DMBE-IV) PES developed by Pastrana et al.50   

The DMBE-IV PES has been used in many studies of the reactions dynamics of HO2. 

It was built with data from several sources, including the ab initio data reported by 

Melius and Blint61 and Walch et al.62, with parameters adjusted to match experimentally 

determined force constants.63  The ab initio data from Walch et al.62 for the O + OH 

asymptote were semi-empirically64 adjusted for electron correlation.  The method used to 

construct the DMBE-IV PES has been discussed in detail elsewhere.65  Comparisons of 

different regions of the PES to higher quality electronic structure calculations51,52 than 

used in its construction have shown significant differences, and comparisons to 

spectroscopic66 and kinetics67,68 experiments show some of the limitations of this surface 

in accurately describing this radical. Several classical trajectory studies69,70 and quantum 

dynamical studies69,71,72 of microcanonical unimolecular decay or bimolecular reaction 

dynamics on this PES have shown strong mixing among the modes, and reaction kinetics 

qualitatively consistent with statistical theories.  However, a trajectory study of Miller73 

using the Melius and Blint61 PES and a follow-up trajectory study of Miller and Garrett74 

using the DMBE IV showed that the HO2* complexes formed from H + O2 or OH + O 

have biased decay back to the reactants.  This result implies the collision complex retains 

some memory of its origin.  Also, Duchovic and Parker75 inferred from a classical 
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trajectory study of H + O2 that IVR in HO2* is slow enough to cause non-statistical 

unimolecular decay, an observation made earlier by Lemon and Hase76 based on an 

empirical PES. Marques and Varandas70 examined mode-specific unimolecular 

dissociation at constant energy and found that the energy decay rate constants were only 

weakly dependent on the mode initially excited. However, the results were reported at 

insufficient resolution to compare to the modest effects Miller and Garrett74 found.  The 

finding of these studies suggest that mode mixing is strong enough on the DMBE-IV PES 

to create an irregular spectrum of quantum mechanical metastable states and a single time 

scale of unimolecular decay, but not strong enough to completely erase all memory of the 

initial conditions under which HO2* is formed.   

Studies on the XXZLG PES53,54,55 show that the modes of HO2 are more quasi-

periodic and decoupled than the modes predicted using the DMBE-IV PES. The 

vibrational spectrum for the bound states on the XXZLG calculated by Lin et al.77 

showed a reduced density of states supported on the surface, with the distribution of 

states being an intermediate case of regular and irregular level spacing.  They found that 

the statistical theory rate overestimated the average quantum mechanical rate, and posited 

that the result is a consequence of slow IVR. Xu et al.78 found regularities in the 

vibrational spectrum of the radical even at energies near the dissociation threshold 

indicative of weak modal coupling, which they suggested would strongly affect 

unimolecular dissociation of HO2. They assigned pure O–O vibrational overtones up to 

18 quanta and to within ≈100 cm-1 of the dissociation limit. Pure O–H vibrational 

overtones could be assigned up to 4 quanta, but at higher energies isomerization appears 

to enhance the interaction between the OH stretching and OOH bending motions, thus 
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ending the overtone progression. Xu et al. also suggested that resonances between O-O 

and O-H could also play a role in energy transfer13(a) between these two modes.  The 

results of three different quantum dynamics studies79-,80,81 on XXZLG for the bimolecular 

reactions (1a) and (1b) show significant non-statistical effects in the differential cross 

sections, trace the contributions from individual and assignable HO2* resonances to 

reaction cross sections and display significant differences with quantum scattering results 

on DMBE-IV. Quasiclassical trajectory calculations on the XXZLG PES have been 

carried out for reactions (1a) and (1b) by Lendvay et al.82 and show that the lifetimes of 

the collision complex formed in reaction (1a) display a bi-exponential distribution. For 

reaction (1b), Jorfi et al.83 found evidence of slow energy transfer between the O–H and 

O–O bonds, resulting in a non-statistically large probability of HO2* dissociating back to 

the H + O2 reactants. All of these studies suggest that XXZLG dynamics has much 

weaker mode coupling than DMBE-IV dynamics, and the result is much more salient 

non-statistical behavior in bimolecular reactions. Despite the high-quality ab initio 

foundation of XXZLG, exact quantum dynamical rate constants81 on XXZLG for the O + 

OH reaction (1b) agree with experiment within a factor of two. Likely sources of the 

discrepancy include experimental error, limitations of the PES, and the possible 

relevance84 of multistate non-adiabatic dynamics. 

 The possible involvement of electronically excited states and the need for more 

accurate electronic structure methods led to the calculations of new sets of PESs for the 

HO2 ground- and first-excited states by Li et al.56  Among those PESs is the ground state 

IMLS PES that is further studied in this paper.  The electronic structure theory used to 

generate the IMLS PES includes extrapolation to estimate the CBS limit. While also 
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interpolative, IMLS fitting is a different kind of representation than the splines used in 

XXZLG and is capable of high accuracy with relatively few points. However, while 

containing the reaction path for dissociation to H + O2, the current IMLS PES is restricted 

to coordinate ranges that do not include the higher energy O + OH asymptote. 

This brief survey of the literature shows that earlier work placed some emphasis on 

the extent of mode coupling in HO2*. Despite that emphasis, lower-energy processes, 

such as IVR and isomerization, which can be sensitive to mode coupling, have not been 

extensively studied on any of the three surfaces. If lower-energy processes display 

different results on the different PESs, perhaps it would be possible to identify specific 

PES features that underpin the dynamical differences. For the higher-energy process of 

unimolecular decay, mode-specificity has only been studied on the DMBE-IV PES where 

mode coupling is thought to be quite strong and only modest mode-specific effects have 

been identified. Based on previous IVR studies,24(a),108 mode-specific effects in 

unimolecular decay are expected to be more significant for the XXZLG PES (due 

apparently to weaker mode coupling).  No dynamics studies have been carried out using 

the IMLS PES.   

In this study we investigate, using classical trajectories, the intramolecular dynamics 

and isomerization on all three PESs and the unimolecular dissociation of HO2 → H + O2 

on the XXZLG and DMBE-IV. This chapter is organized as follows: Descriptions of the 

characteristics of the PESs are given in Sec. A.2, the computational methods are 

described in Sec. B, results and discussion are given in Sec. C, and the conclusions are 

given in Sec. D.  Potential future studies are proposed in Sec. E.   
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2. Potential Energy Surfaces 

a. The XXZLG PES 

Four different spline-based versions of the XXZLG PES have been produced by Xie 

and coworkers.  The first two53,54 are based on ≈15,000  ab initio data points computed at 

the level with the valence electrons correlated in the icMRCI+Q/AVQZ calculations. The 

active space for the CASSCF reference (9e, 7o) constrains the oxygen 1s and 2s orbitals 

to be doubly occupied and includes two 2A'' states with equal weights.  Later in 2007 the 

data set was augmented by ≈3,000 points for large O–O separations (as encountered in 

the O + OH channel), leading to the third version of the XXZLG PES.55  Finally, in 2010 

as part of a study of the lowest 2A' excited state, a further update to the ground state data 

was also reported.56 The new ab initio data were computed using a full valence active 

space (13e, 9o) in the two-state CASSCF reference and the core electrons were also 

correlated in the subsequent icMRCI+Q calculations.  Including core electron correlation 

and the full-valence active space was reported to improve the thermochemistry slightly 

with respect to experiment.56  For the ground state, these improved ab initio calculations 

were carried out at ≈4,000 points to obtain their difference with respect to the previous 

XXZLG PES. This difference was fit with a spline which when added to the previous 

XXZLG PES constitutes the fourth version of the XXZLG PES.  The version of the 

XXZLG PES used in this study is the third version85 developed in 2007 from ≈18,000 ab 

initio points.55 

An examination of the isomerization saddle point identified a minor seam in the 

XXZLG PES that results in a discontinuous force for trajectories traversing the O–O 
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perpendicular symmetry plane. This seam occurs because XXZLG uses only the shorter 

of the two O-H distances.  The use of the shorter O-H distance guarantees a continuous 

value across the symmetry plane but not a continuous gradient.  We smoothed the seam 

using symmetrization86,87 of the PES in the region near the symmetry plane.  This 

smoothed surface has the form   

 ))(1)(OOH()()OOH( abba  SVSVVsym    (16) 

where S(Δ) is a smoothly varying second-order switch of the following form 

S(∆) = min[1, max[0, 1- (10g(∆)3 – 15g(∆)4 + 6g(∆)5)]]   (17) 

where  

g(∆) = (∆ - ∆l)(∆ - ∆u)-1         (18) 

where the progress variable Δ=RH-Oa - RH-Ob with limits Δu = 0.2 Å and Δl  = -0.2 Å.  The 

value, gradient, and Hessian of S(Δ) are zero at both limits, making the Vsym patch 

smoothly join the unmodified XXZLG PES outside of ≈0.2 Å from the O–O 

perpendicular bisector plane.  Note also that precisely at the symmetry plane, the patched 

surface is exactly equal to the original XXZLG PES. Reproducing the value of the 

original XXZLG surface at the symmetry plane means that the isomerization saddle point 

energy, geometry, and vibrational frequencies are exactly the same on the original and 

corrected XXZLG PES except for the imaginary frequency, which is ill-defined on the 

original XXZLG PES. Additional technical details of the XXZLG PES are discussed in 

the appendices. 
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b. The IMLS PES 

Li et al.56 reported a ground-state IMLS PES for HO2 based on icMRCI+Q data using 

CBS extrapolation and 18-reference-states with dynamic weighting.  We used the CS 

point group and built the set of molecular states from separate ground state atoms, 

HO2(2A'') → O(3Pg) + O(3Pg) + H(2Sg).      (19) 

Resolving the atomic states into the molecular CS point group using tables from 

Herzberg88 and combining into molecular states yields a total of 18 doublet states (10 2A', 

8 2A'') which are asymptotically degenerate for separated atoms. There are also sets of 

higher spin quartet and sextet states not considered here. The 18 doublet states were 

included in dynamically weighted (DW) state-averaged (SA) CASSCF calculations89,90 

using a full-valence active space. Maximum weight was focused on the ground 2A'' state, 

and weights for the other states were determined by the DW scheme with B = 2.0 eV.90 

The DW scheme correctly reflects the differing degeneracies which arise in different 

regions of the PES, including Renner-Teller degeneracy with the lowest 2A' state 

observed at linear geometries. The DW multistate scheme also promotes robust 

convergence that is critically important for automated interpolative methods (such as 

IMLS) in which new data is added automatically. Using the DW 18-state description, no 

convergence problems such as those noted in the 2-state fixed weight calculations 

reported by Xie et al.53 were encountered. The 18-state DW-SA-CASSCF calculations 

were used as the reference for subsequent icMRCI+Q calculations.91,92 All electrons were 

correlated in the icMRCI calculations, and the CBS limit was estimated using the l-3 

formula93 and Dunning’s aug-cc-pVTZ and aug-cc-pVQZ bases.94  
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An automated PES generation scheme28(b),,95,96 was used to construct the IMLS PES. 

A total of 1,609 symmetry-unique points was generated by the algorithm starting with a 

seed grid of 200 points. Jacobi coordinates were used with ranges of ROO = [1.0, 2.1] Å 

and RH-OO = [0.5, 2.65] Å. Data were computed for γ ≤ π/2 with the symmetry partner 

(π-γ) added at no cost. Explicit inclusion of the symmetry partner ensures correct 

exchange symmetry and provides smooth behavior across the transition between the two 

wells. Energy was restricted to a maximum of 70 kcal/mol above the global minimum. 

The algorithm for generating the PES as well as the form of the interpolative weight 

function and related numerical parameters are as described in the supporting information 

of Ref. 28(b). The automatic PES generation was terminated with 1,609 points when the 

estimated fitting error reached 1 cm-1. The computed ab initio value of the isomerization 

saddle barrier height differs by 2 cm-1 from the IMLS PES value while the geometries 

differ by less than 0.0001 Å, consistent with the estimated quality of the fit.  It has been 

shown in previous studies that once an IMLS PES is fit to negligible fitting error 

(≈1cm-1), very high fidelity to the structural parameters and vibrational levels associated 

with that ab initio method is achieved.95   

c. Comparisons of the IMLS, XXZLG, and DMBE-IV PESs 

For all three PESs, the dissociation energy (both D0 and De) and the isomerization 

saddle point energy are listed in Table I along with the measured dissociation energy.  

The best experimental estimate for D0(H–OO) is 48.01±0.04 kcal/mol.97 The value of 

D0(H–OO) is 0.21 kcal/mol lower for the IMLS PES,98 0.82 kcal/mol lower for XXZLG, 

and 0.73 kcal/mol higher for DMBE-IV. Typically ab initio methods cannot capture all 
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the correlation energy of a bond and thus underestimate dissociation energies. The 

remaining ≈0.2 kcal/mol discrepancy in the IMLS result is assigned to error in the CBS 

procedure as well as the effect of higher-order correlation not captured by the icMRCI 

method.  The classical isomerization barrier is highest on the DMBE-IV PES, with IMLS 

0.798 kcal/mol lower and XXZLG 2.01 kcal/mol lower than IMLS. The XXZLG value in 

Table I is the value for the fitted PES. As discussed above, when the electronic structure 

method that XXZLG is based on is used to directly calculate the barrier, the result is 1.3 

kcal/mol higher than the value in the table. This barrier is ≈0.7 kcal/mol lower than the 

IMLS barrier and consistent with the differences found for dissociation. 

The entries in the lower part of Table I are the geometries of the equilibrium and 

isomerization saddle point structures. The experimental HO2 equilibrium geometry is 

essentially exactly given by the DMBE PES (which was adjusted to do this) and closely 

approximated by the XXZLG and IMLS PESs. While the XXZLG and IMLS PESs have 

very similar isomerization saddle point geometries, the DMBE PES has a noticeably 

more elongated structure; that is, longer ROO and ROH distances. 
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Table I Dissociation and isomerization energies and equilibrium and isomerization 
saddle point geometries for the DMBE-IV, XXZLG, and IMLS PESs; and available 
experimental results 

 DMBE-IV XXZLG IMLS Experiment 
Energetics (kcal/mol)     
  Dissociation to H+O2  D0 48.74a 47.19b,c 47.80b,c,d 48.01±0.04e 
                                       De 54.85 53.68 54.36  
  Isomerization Barrier 40.72 36.92 38.93   
     
Geometries   
  Equilibrium     
     r(OH) Å 0.9708 0.9708 0.9689 0.9705f 
     r(OO) Å 1.3305 1.3341 1.327 1.330f 
    (OOH)o 104.29 104.12 104.39 104.29f 
  Isomerization Saddle Point     
     r(OH) Å 1.202 1.174 1.162  
     r(OO) Å 1.484 1.424 1.420  
    (OOH)o 51.88 52.66 52.34  
a Mandelshtam et al., Ref. 66. 
b The O2 harmonic ZPE required for D0 is 787 cm-1. There is an inconsequential 

anharmonic contribution to the O2 zero point energy; experimentally determined wexe 
is ≈12 cm-1 [P. H. Krupenie, J. Chem. Ref. Data 1, 423 (1972)]. 

c The HO2 ZPE used in calculating for D0 has an anharmonic value of 3054.6 cm-1 (for 
XXZLG) and 3083.2 cm-1 (for IMLS) calculated as described in the text. 

d  The fitted range of the IMLS PES only extends to RH–OO = 2.65 Å, so the asymptotic 
energy was evaluated from an electronic structure calculation with RH–OO = 25.0 Å. 
The difference in energy between 25.0 Å and 2.65 Å is 0.11 kcal/mol. 

e Ruscic, Ref. 97. 
f Lubic, Ref. 63(a). 

Table II lists the calculated lower vibrational levels on the three PESs and the 

experimental values. For the IMLS and XXZLG PESs, the entries in Table II and the 

HO2 zero point energy (ZPE), referred to in Table I, are from a potential-optimized 

discrete variable representation (PODVR) variational calculation.99  The details of those 

calculations are as reported in Ref. 56 for the IMLS PES. Vibrational levels have been 

reported53,54 for the two earliest versions of XXZLG PESs but not for the later version 

used here. The XXZLG and IMLS PESs predict vibrational spectra in excellent 

agreement with experiment.63 For the seven levels listed in Table II, the root-mean-square 
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(rms) error with respect to experiment is ≈9 cm-1 for the XXZLG PES and ≈10 cm-1 for 

the IMLS PES.  In contrast, the rms error for the DMBE-IV PES is an order of magnitude 

larger. 

We have found previously that a litany of small corrections such as core correlation, 

CBS extrapolation, spin-orbit or relativistic corrections can offset each other, and unless 

everything is included, improving one aspect of the electronic structure calculation might 

not improve agreement with experiment (if the lower-level calculations benefit from 

cancelation of errors). Further improvements of the XXZLG and IMLS PESs with high-

level electronic structure theory results will require addressing the effects of these many 

small corrections. 

Table II. Comparison to experiment of the calculated vibrational levels in cm-1 for the 
DMBE-IV, XXZLG, and IMLS PESs.   

 DMBE-IVa XXZLG IMLS Experiment 
HO2     
(001)  1065.5 (  32.1)b 1090.1 (   7.5) 1104.7 (  -7.1) 1097.63c 

(010) 1296.4 (  95.4) 1388.4 (   3.4) 1395.9 (  -4.1) 1391.75c 
(100) 3333.7 (102.5) 3442.6 (  -6.4) 3448.9 (-12.7) 3436.20d 
(200) 6492.4 (158.8) 6671.0 (-19.8) 6672.8 (-21.6) 6651.19e 
DO2     
(001)  1015.0 (   5.2) 1023.4 (  -3.2) 1020.16f 
(010)  1116.5 (   5.0) 1122.3 (  -0.8) 1121.47f 
(100)  2552.7 (  -3.5) 2551.7 (  -2.5) 2549.22g 
a  Brandao et al., Ref. 57. 
b The numbers in parentheses are the differences in the experimental and calculated 

values.  

c Burkerholder, 63(e) 
d Yamada, 63(d) 
e DeSain, 63(f) 
f Uehara, 63 (b) 
g Lubic, 63(a) 

The contour plots of the three PESs in Fig. 5 highlight the similarity in global shapes 

of the IMLS and XXZLG PESs and how they differ from the DMBE-IV PES. In these 
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plots, the Jacobi coordinates ROO-H and ∡OO-H vary while the O–O bond distance is fixed 

at the value in the HO2 equilibrium geometry of each respective PES. The plots of the 

XXZLG and DMBE-IV PESs are matched side by side along the O–O perpendicular 

bisector symmetry line with the plot of the IMLS surface in order to provide direct 

comparison of the surfaces. The two symmetrically related equilibrium positions can be 

seen with the isomerization barrier separating them. At the top of each plot, the two 

symmetrically related dissociation channels from each isomer are readily seen. At the 

bottom of each plot, there are two symmetrically related barriers to linearity in the H-O-O 

bending motion. 

  

Figure 5 Contour plots of the IMLS (a), XXZLG (b), and DMBE-IV (c) surfaces, 
with respect to ROH and the center of mass angle of H with the O-O bond.  The O-O 
bond distance is fixed at the HO2 equilibrium geometry of each PES.  Contour spacing is 
10 kcal/mol. 
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On the scale of Fig. 5, the IMLS and XXZLG PESs in the top panel appear to be very 

similar; however, there is a slight mismatch (≈1 kcal/mol) at the isomerization symmetry 

line and at the barrier to linearity. The width of the dissociation channel illustrated by the 

closeness of the red features in the plot is probably slightly narrower in the IMLS PES. 

These results are consistent with the energy differences in Table I.  The bottom panel of 

Fig. 5 shows that the IMLS and DMBE-IV PESs are clearly different, with the DMBE-IV 

having a more curved reaction path between the isomerization barrier and the equilibrium 

point, a considerably lower barrier to linearity, and a narrower dissociation channel. Yang 

and Klippenstein67 commented on the lack of sufficient ab initio input into DMBE-IV for 

the bending component of the dissociation channel and the possible implications for 

reliable rate constant calculations. 

The manifestations in the dynamics of the similarities and differences in the three 

PESs are clearly illustrated with SOS plots.100  The SOS plots shown in Fig. 6 were 

calculated on each of the three PESs with groups of 50 trajectories with energies of 10.0, 

20.0, 30.0, and 40.0 kcal/mol (trajectory details are given in Sec. B.1.).  The 2N-2 

mapping,100 which defines the 4D subspace, was done by freezing the O-O distance at the 

respective equilibrium value for each PES (as in Fig. 5). Xu, et al.78 found evidence of 

regularity in the motion of the O-O mode up to dissociation, but also found signs of 

irregularity in the motion of the modes associated with the hydrogen atom.  This irregular 

motion, which could be associated with mode mixing, is what we would like to 

understand.  Surfaces-of-section, shown in Fig. 6, makes the visualization of the 

accessible phase space and identification of regularities in trajectories straightforward and 

allow for direct comparison for reduced dimensionalities of the dynamics.  We defined 
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two planes in Cartesian space using the equilibrium coordinates of the hydrogen atom 

(xmin,ymin).  Figure 6 shows the record of the coordinate x and conjugate momentum Px 

each time a trajectory of the hydrogen atom passes through the plane defined by ymin.  An 

analogous figure (not included here) for y and Py for passage through the plane defined 

by xmin shows similar results.  

 

Figure 6 Poincaré surfaces-of-section for x and Px subspace (see text for details). From 
the top, rows are results for energies 10, 20, 30, and 40 kcal/mol.  From the left, columns 
are for the IMLS, XXZLG, and DMBE-IV PESs 

The results in Fig. 6 for the IMLS and XXZLG PESs are similar over the whole 

energy range. Except at the highest energy of 40 kcal/mol, both show a regular 

phase-space structure.  At 40 kcal/mol there is increasing irregularity in the phase space, 

54



 

 39   

but the major regular features of the SOS from the two PESs still match.  In contrast, the 

phase space of the DMBE-IV is largely irregular except at the lowest energy of 10 

kcal/mol, which is just above the ZPE.  The features of the regular phase-space structure 

do not match well with those of IMLS and XXZLG, consistent with noticeable 

differences in the vibrational frequencies as seen in Table II.  The highest total energy in 

Fig. 6 remains below the isomerization barrier on all three PESs for the fixed O-O 

distance of the SOS calculations. (Note that the isomerization barrier heights in Table I 

are for the O-O distance relaxed.)  Related results to those shown in Fig. 6 have been 

reported by Seidel et al.101 for the DMBE-IV PES and by Barnes and Kellman102 for 

earlier versions of the XXZLG PES than the one used here.  

These results on energetics, geometry, frequencies, shape, and phase-space structure 

emphasize the similarities between the IMLS and XXZLG PESs and their common 

differences with the pioneering DMBE-IV PES.  The most easily quantified difference in 

the IMLS and XXZLG PESs is in the isomerization barrier heights, which is probably 

mostly due to a local sparsity of ab initio data used to fit the XXZLG PES (see 

Appendices) and only partially due to the different accuracies of the underlying electronic 

structure theory methods.  At greater levels of detail, there are other differences between 

the IMLS and XXZLG PESs that have implications for dynamics and are explored in 

Sec. C. 
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B. Methods 

1. Trajectory Calculations 

All of the simulations were performed with the classical trajectory code GenDyn.38 

Groups of 50 trajectories were calculated for the SOS plots and groups of 1,000 

trajectories were calculated to determine all rate constants.  The trajectories were 

integrated using a fixed step size 5th/6th-order Adams-Moulton predictor-corrector 

integrator43 initiated with a fourth-order Runge-Kutta-Gill routine.  The SOS trajectories 

were integrated for 5 ps.  The integration time for the IVR studies was 10 ps.  The 

trajectories for studying reactive processes were integrated until either a reaction criterion 

was satisfied, or the maximum integration time of 10 ps was reached.  Hessian matrices 

for normal mode and IVR analyses were calculated by fourth-order finite difference.103  

The angular momentum was set to zero in all simulations.  

Statistical initial conditions were prepared for total energies of 44, 46, 48, 50, and 52 

kcal/mol for isomerization and ≈60.0 kcal/mol for dissociation using the efficient 

microcanonical sampling (EMS)24,34 algorithm as implemented in GENDYN.  All three 

atoms were moved during a Markov walk started from the equilibrium geometry with a 

250,000-step warm-up walk, followed by 100,000-step walks between trajectories.  The 

maximum atomic displacement of each atom was 0.2 Å, and the acceptance/rejection 

ratio of each walk was in the range of 0.4 to 0.6.  Statistical initial conditions were 

selected for total energies of 10, 20, 30 and 40 kcal/mol for SOS plots.  Only the 

hydrogen atom moved in the Markov walk with a 25,000-step warm-up with subsequent 

walks of 10,000 steps. The Markov walk assigned only the x and y components of the 

momentum of the hydrogen atom.  The momenta of the oxygen atoms and the 
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momentum in the z direction of the hydrogen atom were fixed at zero, restricting the 

phase space to four dimensions.  

Quasiclassical initial conditions24 were used for initial excitation of one normal mode 

while the other normal modes were assigned ZPE.  At high energies significant regions of 

phase space may not be well described by the normal modes, which can cause small 

transient, minor effects in the initial trajectory behavior. However we find that these 

minor effects do not influence the conclusions of this study. The mode-specific initial 

excitations are listed in Table III, where the normal modes are identified by their major 

component in valence coordinates. 

Table III. Initial normal mode excitation energies (and corresponding fractional 
quantum numbers) and ZPE energies. Excitation quantum numbers are in parentheses.a 

 DMBE-IV IMLS XXZLG 
Total Energy (kcal/mol)    
  E = ≈35.5 (below isomerization)    

O-O 28.6   (8.6) 28.1   (8.2) 28.4   (8.4) 
O-O-H 28.9   (7.0) 28.9   (6.5) 29.0   (6.6) 
O-H 31.9   (2.7) 31.6   (2.5) 31.5   (2.5) 

  E = ≈47.3 (above isomerization)    
O-O 40.9 (12.5) 40.1 (11.8) 39.9 (12.0) 
O-O-H 40.6 (10.0) 40.5   (9.3) 40.5   (9.4) 
O-H 43.8   (3.9) 43.7   (3.7) 43.6   (3.7) 

  E = ≈59.9 (above dissociation)    
O-O 51.88    (16)  50.34 (15.26) 
O-O-H 52.19    (13)  50.72 (11.91) 
O-H 54.75      (5)  53.45 ( 4.593) 

    
Harmonic ZPE    

O-O 1.57 1.63 1.60 
O-O-H 1.93 2.07 2.04 
O-H 4.98 5.27 5.25 

a. The normal modes are identified by the major internal coordinate component. 

For IVR and isomerization studies, fractional quantum numbers were used to give the 

same total energy to within ≈1% for each of the PESs. We have repeated the Marque and 
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Varandas70 trajectory study of unimolecular dissociation on the DMBE-IV PES. For a 

comparable calculation using the XXZLG PES, we assigned ZPE to the unexcited modes 

and used fractional quantum numbers (given in parentheses in Table III) for the excited 

modes to obtain the same total energy above De for the two PESs. The difference in the 

average total energies for the DMBE-IV and XXZLG PESs corresponds to the difference 

in De (see Table I).  The approximate total energy listed in Table III is the mean of these 

two average energies. 

2.  Analysis of Trajectories 

 Studying the energy relaxation of an excited vibrational mode requires a means of 

measuring energy localization, which can only be done approximately due to ro-

vibrational coupling. The method selected for monitoring IVR involves decomposing the 

kinetic energy by standard transformations31 into the three normal mode kinetic energies 

and then assuming that the fraction of total kinetic energy in a mode is equivalent to the 

fraction of total energy in a mode. In this approach, the inherent ambiguity in assigning 

potential energy to different modes is avoided. Since the normal mode eigenvectors 

mathematically span the space of the three internal coordinates, the kinetic energy 

decomposition is, in principle, complete.  By this means, the energy Ei(t) in the ith mode 

is calculated from the trajectories. To us help interpret Ei(t), we developed an analytical 

kinetics model of energy transfer in a three mode system that is based on two principles: 

(1) the change in the energy of a mode is directly proportional to the amount of energy 

the mode currently has and (2) the energy of each mode asymptotically relaxes to the 

same value, i.e., the total energy divided by the number of modes.  As discussed in the 
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Appendix II, these two principles lead to an explicit expression for Ei(t) in terms of two 

effective IVR rate constants kj and one constant c that affects the amplitude of the two 

decay processes. These expressions will be compared to the classical trajectory results. 

The two bond-breaking processes of isomerization and unimolecular dissociation are 

defined as follows.   The time of isomerization was defined to be when the hydrogen 

atom passed through the symmetry plane, bisecting the O-O bond, provided that the 

shorter O-H stretching motion underwent two turning points.  This arbitrary definition 

excludes rapidly recrossing trajectories.  For dissociation, the lifetime was taken to be the 

time of the last inner turning point for the shorter OH bond distance before the distance 

between the center of mass of O2 and H exceeded 5 Å. This inner turning point definition 

eliminates the effect of the relative velocity of escaping H-atom on the dissociation 

lifetime. By the turning point definition of a lifetime, any trajectory that dissociates with 

no inner turning point must be back integrated in time to find its last inner turning point 

in negative time. We refer to these rapidly dissociating trajectories as “ballistic” 

trajectories.104  

The first-order rate constants for isomerization and dissociation were calculated by 

least-squares fitting of the unisomerized or undissociated trajectory populations 

(determined from the lifetimes) to the bi-exponential form: 

)exp()exp()( 21 tkBtkAtE        (20) 

where A and B are prefactors and k1 and k2 are rate constants. The prefactors were 

determined by linear least squares fitting and the rate constants were determined by a grid 

search.  In many cases, the second term in Eq. (20) was found to be negligible. For some 

mode-specific excitations, for an initial period of time there is either no decay rate or an 
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accelerating decay rate. The reasons for such initial regions are varied24 (a) and will be 

discussed as they appear in the next section. We will refer to this as a latency effect.  

Equation (20) is inappropriate for fitting such behavior, and in Appendix II we develop a 

method to determine a latency time t0.  Any population information that occurred before 

t0, in the groups of trajectories that displayed latent effects, was excluded from the fitting 

process of Eq. (20).  

C. Results and Discussion  

We have run trajectories on all three PESs to compare the HO2 IVR dynamics, the 

isomerization dynamics of H-O-O’ → O-O’-H, and the unimolecular dissociation 

dynamics of HO2 → H + O2.  The results of each of these are now discussed in order.  

1. IVR  

Normal mode kinetic energies as fractions of the total are plotted as a function of time 

in Figs. 7 and 8 for total energies of 35.5 kcal/mol and 47.3 kcal/mol, respectively; the 

red, magenta, and green curves correspond, respectively, to the results of the initially 

excited O–O stretching, O-O-H bending, and O-H stretching modes.  These two different 

energies were selected to determine the effect of isomerization on the relaxation process. 

Isomerization is not energetically accessible on any of the PESs at 35.5 kcal/mol but is at 

47.3 kcal/mol.  The results in the columns from left to right are for the IMLS, XXZLG, 

and DMBE-IV PESs.   

The results for 35.5 kcal/mol are quite similar for the IMLS and XXZLG PESs down 

to fine detail.  The relaxation timescale is well beyond the duration of the integration time 
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of the trajectories (10 ps) regardless of the excited mode.  The relative ordering of the 

modes from fastest to slowest is:  OH*, OOH* and then OO*.  The ordering is similar 

with the results from the DMBE IV; however, the relaxation of trajectories on this 

surface completed within 1 ps to 2 ps (note the expanded x-axis timescale for the DMBE-

IV PES results in Fig. 7). 

The results in Fig. 7 illustrate some of the limitations of our mode-specific trajectory 

studies. The ZPE fraction of the total energy of 35.5 kcal/mol is ≈0.05 for the OO and 

OOH modes and ≈0.15 for the OH mode (see Table III). Consequently, the top (OO*) 

and middle (OOH*) row of panels in Fig. 7 should have the excited mode energy fraction 

starting at ≈0.8 while the lower row (OH*) should start at ≈0.9. This expectation of the 

fractional partitioning of energy in the normal modes is only true for the OO* energy.  

For the other cases, the initial fraction is noticeably lower, and for OOH* on the 

DMBE-IV PES, it would appear that two modes are excited. On all three PESs, when 

either OH* or OOH* are initially excited, there is a rapid energy redistribution from the 

selected initial distribution to what is seen in Fig. 7 on a timescale less than 100 fs, too 

fast to be resolved in the figure. This redistribution is undoubtedly due to the inherent 

difficulties of decomposing the total energy into contributions from specific modes and 

the use of normal modes for assigning the initial conditions. The kinetics model does not 

include such processes, and no attempt is made to initialize the model to the true initial 

conditions.  Rather, as discussed in the Appendix II, a least-squares procedure is used to 

get effective initial conditions. The resulting fits are the black lines in Fig. 7, with 

optimized values of k1, k2, and appearing c in Table IV.  There is later discussion of 

expanding the two exponentials as linear functions to characterize the fitting process. 
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These linear expansions are described by two slopes s and s that also appear in this 

Table IV . 

The results in Fig. 7 show that the kinetics model fits the trajectory results very well.  

The only clear but minor fitting deficiency occurs for the IMLS and XXZLG PESs for 

OH* at early times (< 1 ps).  In this case, the trajectory results and the model display a 

fast and a slow decay for each mode of energy.  However, in the region of slow decay the 

OO and OOH energy fractions maintain a near constant absolute difference with time, a 

result that cannot be represented by the common slow rate constant of the model. In 

effect, the trajectory results exhibit more decay constants than the model can provide, 

implying the physical principles upon which the model is based are insufficient to 

describe the results in detail.  
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Figure 7 Ensemble-averaged normal mode energies as functions of time for initial 
conditions of mode-specific excitation (see text for details) and a total energy of ≈35.5 
kcal/mol.  From the top, rows are results for the excited mode being OO*, OOH*, and 
OH*.  From the left, columns are results for the IMLS, XXZLG, and DMBE-IV PESs.  In 
all panels, red, magenta, and green curves represent the OO, OOH, and OH modes, 
respectively, while the black lines represent the kinetics model fits. 
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Table IV. IVR rate constants (ps-1) for specific mode excitations.a  

 E =35.5 kcal/mol E=47.3 kcal/mol 

 IMLS XXZLG DMBE IV IMLS XXZLG DMBE IV 

OO*           c 0.8(6) -0.1(3) 1.66(9) 2.2(9) 2.1(3) 4.2(1) 

k1 0.003(5) 0.017(4) 0.72(5) 0.05(3) 0.07(1) 0.32(1) 

k2 0.014() 0.037(4) 2.18(5) 0.16(3) 0.22(1) 1.37(1) 

sΔ -0.0076 -0.012     

sΓ 0.0024 0.0045     

OO*           c -2.0(7) 1.2(4) -2.4(9) 0.33(5) 0.42(2) 0.50(3) 

k1 0.042(8) 0.015(8) 3.0(1) 0.051(9) 0.040(8) 0.0(3) 

k2 0.092(8) 0.045(8) 9.0(1) 0.258(9) 0.394(8) 10.6(3) 

sΔ -0.021 -0.018     

sΓ 0.00075 0.0045     

OO*          c 1.3(4) 1.2(6) 0.53(2) 0.57(2) 0.58(2) 0.61(3) 

k1 0.02(1) 0.02(1) 3.4(6) 0.50(3) 0.32(2) 7.0(2) 

k2 0.054(8) 0.049(3) 94.0(2) 5.4(1) 3.21(4) 62.0(2) 

sΔ -0.032 -0.025     

sΓ -0.00087 0.0096     

a  Number in parentheses is the uncertainty in the last digit. 
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Figure 8 is the analogue of Fig. 7 but for 47.3 kcal/mol, which is above the barriers 

for isomerization for the three PESs. Table IV contains the optimized values of the 

kinetics model parameters.  The IVR above the isomerization threshold is similar in fine 

detail for the IMLS and XXZLG PESs. The relaxation timescale for all excited modes is  

comparable to or less than the duration of the trajectories (10 ps). In contrast, on the 

DMBE-IV PES IVR is complete by ≈1 ps or less no matter what mode is excited (notice 

the smaller x-axis scale for the DMBE-IV PES results in Fig. 8). The excited OH* and 

OOH* relax faster with OO* noticeably slower for all three PESs, as is the case for the 

lower-lenergy results shown in Fig. 7. As in Fig. 7 and for the same reasons, there are fast 

redistribution effects. The ≈12.3 kcal/mol increase into each excited mode should make 

the initial energy fraction higher in Fig. 8 than in Fig. 7.  In almost all cases the apparent 

initial fraction is lower due to short time (≤ 100 fs) energy redistribution not resolvable in 

the panels. 
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Figure 8 The same as Fig. 3 except for a total energy of ≈47.3 kcal/mol. 
 
Although the results in Fig. 8 show more varied relaxations including an overshoot of 

the asymptotic equipartition of energy, the kinetics model fits the trajectory results at 

nearly comparable quality to that in Fig. 7 for the lower energy. The clearest deficiency 

concerns OOH* relaxation on both the IMLS and XXZLG PESs where the decay at short 

times is underestimated. In this case, E2, the OH energy, is essentially at its asymptotic 

value of E/3 except at times too early to be resolved on the plot. Energy conservation 

then forces E1 and E3 to be essentially mirror images of each other about the E2 at all 

times. The fits and trajectory results display this symmetry but the kinetics model is too 

simplistic to represent the higher frequency or transient decay components of the 

trajectories. A second deficiency is OOH* for DMBE where E2 is poorly represented at 
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very short times (<200 fs). The temporal range of the panel is only 1 ps but the fit is 

applied over the entire 10 ps range. Upon close examination of the panel, the fit has two 

asymptotic values, one for E2 and the other for E1 and E3. Through most of the range of 

the panel and beyond to the 10 ps maximum range of the fit, the trajectory results for 

OOH* on the DMBE-IV PES exhibit an E2 energy fraction persistently lower than the 

energy fraction for the other two modes. This behavior forces the optimum fit to display 

two asymptotes at the price of a poor representation of E2 at very early times. (How the 

model can realize two asymptotes is discussed in Appendix II material.)  In this case, the 

trajectory approach to equilibrium is too complicated for the kinetics model. 

It is convenient to discuss the IMLS and XXZLG results in Table IV first, then the 

DMBE-IV results. A leading feature of the IMLS and XXZLG results is that for 35.5 

kcal/mol, all the values for k1 and k2 are smaller than 0.1 ps-1 whereas for 47.3 kcal/mol at 

least k2 is substantially greater than 0.1 ps-1. This means that for all or at least most of the 

10 ps temporal range of the IVR data at 35.5 kcal/mol, the exponentials in the fitting 

function of Eq. (S.4), found in Appendix II, can be reasonably well approximated by a 

first-order expansion that is linear in time. The fits in Fig. 7 clearly show this 

approximately linear behavior.  As discussed in Appendix II, in such circumstances the 

decay is best represented by two slopes, s∆ and s, which only for IMLS and XXZLG at 

35.5 kcal/mol are listed in Table IV. For both IMLS and XXZLG, the values of s∆ and s 

show overall that IVR becomes more rapid in the order OO*, OOH*, and OH*.  

However, the IMLS and XXZLG values are not that similar.  For the larger slope s∆, the 

IMLS value varies from ≈60% lower to ≈30% higher than the XXZLG value.  The lesser 

slope s, the IMLS value varies from ≈15% to 90% of the XXZLG value. The IMLS and 
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XXZLG results at 35 kcal/mol look quite similar in Fig. 7, but that is somewhat due to 

the fact that only a fraction of the decay takes place in 10 ps.  Had the trajectory results 

been carried out to longer times, the differences would likely be more manifest. 

The IMLS and XXZLG results for 47.3 kcal/mol in Table IV show relaxation rate 

constants that are all considerably larger than the rate constants at the lower energy. 

Exponential, as opposed to linear, decay is much more evident in Fig. 8. As for 35 

kcal/mol, for both IMLS and XXZLG the IVR decay rate constants increase in the order 

OO*, OOH*, and OH*.  The OH* rate constants are an order of magnitude larger than 

the rate constants of OOH*, a much larger increase than at 35 kcal/mol and an indication 

of an accelerating OH* decay.  For the large decay rate k2, the IMLS value is from ≈65% 

lower to ≈65% higher than the XXZLG value. For the smaller decay rate k1, the IMLS 

value is from ≈70% lower to ≈60% higher than the XXZLG value.  Together with similar 

results at 35 kcal/mol, the results indicate that IMLS and XXZLG do have somewhat 

different IVR decay characteristics. Over this energy range, IMLS IVR occurs more 

slowly for OO* and more rapidly for OH* relative to XXZLG IVR decay. For OOH* 

over this energy range, the IMLS and XXZLG exchange order with respect to decay rate 

constants. 

Unlike IMLS and XXZLG, a 10 ps timescale is sufficient at both energies to capture 

all of the IVR processes on DMBE-IV. The k1 and k2 values time constants obtained 

using the DMBE-IV PES in Table IV are at least 40 times larger at 35 kcal/mol and at 

least 4.5 times larger at 47.3 kcal/mol than the corresponding rate constants computed 

using the IMLS or XXZLG PESs.   This implies a significant qualitative difference in the 

dynamics and associated IVR.  For example, the DMBE-IV results for OH* at both 
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energies below and above isomerization has the larger k2 time constant exceeds 50 ps-1, 

implying relaxation over within a 10 fs to 20 fs, or one to two OH vibrational periods. 

Such processes are not resolvable in the IMLS and XXZLG panels of Figs. 7 and 8 but in 

the expanded timescale of the panels for DMBE, they are just visible in the earliest times 

on the plots.  As discussed earlier, on this timescale limitations in the initial condition 

preparation and the approximations used to monitor mode-specific energies lead to 

noticeable apparent redistributions of energy.  For IMLS and XXZLG, the fit is 

insensitive to such processes because slow energy transfer processes that extend over the 

whole temporal range outweigh such brief transients.  However, for DMBE-IV, these 

transients are more comparable to the usual energy transfer processes and the fits at least 

of OH* reflect that. 

Consistent with IMLS and XXZLG, the DMBE-IV decay rate is slowest for OO* and 

fastest for OH*.  In contrast to IMLS and XXZLG, the DMBE-IV decay rate constants 

have a much milder dependence on energy and, in the case of OO*, the decay rate 

constants actually decrease with energy.  Careful examination of the OO* results for the 

DMBE-IV PES in Figs. 7 and 8 show the trajectories predict a slightly slower relaxation 

at the higher total energy. The DMBE-IV PES has the highest isomerization barrier, ≈1.8 

kcal/mol higher than IMLS. This might imply that the phase space volume associated 

with the isomerization region of the PES is less accessible for the DMBE-IV PES than 

for the IMLS or XXZLG PES, resulting in a corresponding decrease to already rapid IVR 

for the bend and stretch modes most coupled at the isomerization saddle point.  

To better understand the effect of isomerization on IVR,105 the energy fraction of 

different modes is plotted as a function of time in Fig. 9 for the time-dependent ensemble 
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of trajectories that have not yet isomerized. As time progresses, isomerization reduces the 

number of trajectories in this ensemble causing the sampling noise in the ensemble 

averaged energy fraction to increase. For this reason, the energy fraction was not 

followed beyond the time where 90% of the trajectories had isomerized.  The comparison 

of Fig. 9, which excludes isomerization, to Fig. 8, which includes isomerization, shows 

qualitative differences. 

 

Figure 9 The same as Fig. 8 only for the populations of those trajectories at time t that 
have not yet isomerized. The time history of each unisomerized population stops at either 
10 ps, or when only 10% of the population remains. 

Before discussing the differences, note that the OOH* and OH* DMBE-IV results in 

panels (h) and (i) are almost identical in Figs. 8 and 9. As will be shown in Sec. C.2 of 

the results and discussion, for these two cases the isomerization rate is significantly 
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slower than the IVR rate.  The IVR is essentially complete before isomerization begins.  

In all other cases in Figs. 8 and 9, the IVR is comparable to or slower than isomerization. 

In these other cases, Fig. 9 shows that isomerization selectively removes from the 

ensemble those trajectories that spend most of their time with more OOH bend energy 

and leaves behind trajectories that have larger OO and OH stretch energy. This is most 

clearly seen for all three PESs for OO*. The results in Fig. 9 suggest that the asymptotic 

equipartition of energy is not reached in the ensemble of unisomerized radicals because 

the isomerization removes those with sufficient energy in the OOH and OH modes to 

isomerize leaving a population with “excess” energy in the OO mode. As shown in 

Sec. B.2, the main difference between DMBE-IV and IMLS or XXZLG in the top row of 

Fig. 9 is that the isomerization and IVR rate constants are comparable for only 

DMBE-IV, for which some of the IVR is complete before isomerization becomes 

significant. In the cases of OOH* and OH* excitations on the IMLS or XXZLG PES, the 

removal of isomerized species from the ensemble results in a much shorter timescale 

shown in Fig. 9, which is an indication of how dominant isomerization is over IVR. The 

results for OOH* clearly illustrate that isomerization is much faster than IVR; note that 

the timescale of Fig. 9 is about one-tenth that of Fig. 8. An important difference in the 

two PESs is that they differ by ≈2 kcal/mol in the isomerization barrier. 

The results in Fig. 9 show how isomerization acts to create a new energy distribution 

in the as yet unisomerized population. Under normal circumstances, that new energy 

distribution cannot be accessed because eventual re-isomerization would further mix all 

populations.  However, conceptually if the isomerized HO2 could be prevented from re-

isomerizing, then the filtering by isomerization could have chemical consequences. For 
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example, if two different isotopes of oxygen were present in HO2 and if some isotopically 

selective photochemical process could prevent a re-isomerization, then the unisomerized 

population could carry out chemistry with its filtered energy distribution. This kind of 

effect would be present for any molecule where isomerization is faster than IVR. 

2. Isomerization  

Since the trajectories used for the IVR calculations in Figs. 8 and 9 isomerized on all 

three PESs, these same trajectories can be analyzed for mode-specific isomerization.  The 

normalized populations of unisomerized trajectories as a function of time are plotted in 

Fig. 10 along with the fit according to Eq. (20), whose rate constants are listed in Table 

V. In the figure, red (OO*), magenta (OOH*), and green (OH*) curves are compared to 

the black dashed curves of the fit.  

Figure 10 displays what we have called a latency time in Sec. B.2 For all three PESs, 

OO* has an initial accelerating rate while for IMLS and XXZLG, OH* has a shelf visible 

in the plot inserts.  A prominent reason for such features is that the initial position of the 

hydrogen atom for OO* and OH* are well removed from the perpendicular bisecting 

plane of the O-O bond.  Even with facile energy transfer into the bending mode, the 

hydrogen atom will take time to reach the isomerization region. Also as discussed 

concerning IVR, imperfect initial conditions can affect initial energy transfer. Taken 

together, these effects can give rise to latency in the isomerization time.  As described in 

Supplemental Material, the population up to the latency time listed in Table V is not 

included in the fit of Eq. (20). This results in a single exponential fit, i.e., B = 0 in Eq. 

(20), for all three excitations for DMBE-IV and for OO* for IMLS and XXZLG.  
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Figure 10 For the IMLS (a), XXZLG (b), and DMBE-IV (c) PESs, the population decay 
as a function of time due to isomerization for initial conditions of mode-specific 
excitation at a total energy of ≈47.3 kcal/mol (see text for details).  In all panels, red, 
magenta, and green curves represent the OO, OOH, and OH modes respectively while the 
black lines represent the kinetics model fits. Inserts in each panel magnify the results at 
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early times. 

A prominent reason for such features is that the initial position of the hydrogen atom 

for OO* and OH* is well removed from the perpendicular bisecting plane of the O-O 

bond.  Even with facile energy transfer into the bending mode, the hydrogen atom will 

take time to reach the isomerization region. Also as discussed concerning IVR, imperfect 

initial conditions can affect initial energy transfer. Taken together, these effects can give 

rise to latency in the isomerization time.  As described in Appendix II, the population up 

to the latency time listed in Table V is not included in the fit of Eq. (20). This results in a 

single exponential fit, i.e., B = 0 in Eq. (20), for all three excitations for DMBE-IV and 

for OO* for IMLS and XXZLG.
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Table V. Isomerization rate constants (ps-1), prefactors, and latency times (ps) under different initial conditions as a 

function of energy for the three different PESs.   

Energy 
(kcal/mol) 

Initial 
Conditions 

IMLS XXZLG DMBE-IV 
A k1 B k2 t0 A k1 B k2 t0 A k1 t0 

44.0 EMS 0.56 0.04 0.40 0.71  0.49 0.13 0.48 1.31  1.00 0.22  
46.0 EMS 0.46 0.16 0.52 1.77  0.40 0.19 0.54 1.93  1.00 0.53  
47.3 OO* 0.99 0.13   1.53 0.99 0.18   1.24 1.23 0.68 0.38 
 OOH* 0.08 0.23 0.87 3.40  0.14 1.04 0.84 5.01  0.92 0.77  
 OH* 0.16 0.31 0.99 1.63 0.17 0.11 0.30 1.07 1.98 0.28 0.94 0.82  
48.0 EMS 0.43 0.21 0.55 2.53  0.37 0.32 0.59 2.73  1.00 0.90  
50.0 EMS 0.33 0.28 0.62 2.84  0.27 0.36 0.69 2.94  0.96 1.44  
52.0 EMS 0.30 0.36 0.66 3.49  0.30 0.58 0.68 4.14  0.97 1.78  
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For IMLS and XXZLG, Fig. 10 clearly shows the rate constant for isomerization is 

quite dependent on which mode was initially excited.  In particular, the OO* 

isomerization rate is on the order of 10 times slower than the rate when either of the two 

other modes are excited. In Table IV, the relevant IVR rate k2 is comparable to the 

isomerization rate in Table V. Since O-O vibration is not the isomerization reaction 

coordinate, IVR is a necessary first step for isomerization to occur. The substantial 

latency times and the slow isomerization rate indicate that IVR is the bottleneck for 

isomerization for OO*.  As would be expected, OOH* has the fastest isomerization rate 

and no latency time because bending motion is a dominant component of the 

isomerization reaction path. The dominant isomerization rate is an order of magnitude 

faster than the IVR rate constants in Table IV, meaning that isomerization is largely over 

before substantial amounts of energy have leaked by IVR into modes less well connected 

to the isomerization reaction path. The slower rate in the bi-exponential fit to OOH* 

isomerization is somewhat comparable to the IVR rate constants in Table IV, suggesting 

that this ≈10% tail to the declining population is a consequence of IVR processes re-

assembling energy into the bend. The OH* isomerization rate constants fall in between 

those of OO* and OOH*. From Table IV, the fastest IVR rate constants are two or three 

times faster than the dominant isomerization rate constants in Table V and comparable to 

the dominant isomerization rate constants for OOH*. Although faster than isomerization, 

there is a time lag between converting OH stretching motion into OOH bending motion 

which leads to the small (≈100 fs) latency times listed in Table V.  IVR distributes energy 

to OOH, promoting isomerization, but also to OO, which is inefficiently connected to 

isomerization. Like OOH*, the ≈10% tail to the population declines at a slow rate that is 
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comparable to most of the IVR rate constants in Table IV, suggesting an IVR-type 

bottleneck to re-assembling initially misdirected energy back into the bend. 

In contrast to IMLS and XXZLG, the results in Fig. 10c and Table V clearly show the 

isomerization rate obtained using DMBE-IV is independent of which mode is excited. 

The main difference between modes seen in Fig. 10c is not the rate but the latency time 

for OO*. Contrasting Tables IV and V, the OO* faster IVR rate is twice that of 

isomerization, leading to a latency time smaller by a factor of three than those of the 

other two PESs.  The OO* isomerization rate is the smaller than that from either OOH* 

or OH* excitations by ≈15%, perhaps due to some lingering effects of IVR processes. 

The OOH* and OH* faster IVR rate constants are at least an order of magnitude faster 

than the isomerization rate constants, meaning that for most of isomerization, memory of 

the initial excitation is nearly lost. There are no latency times and the isomerization rate 

constants are within 10% of each other. 

The isomerization decay of an initially random population is plotted in Fig. 11 for 

total energies 44, 46, 48, 50, and 52 kcal/mol on each PES. 
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Figure 11 For the IMLS (a), XXZLG (b), and DMBE-IV (c) PESs, the population decay 
as a function of time due to isomerization for initial conditions selected using EMS (J=0) 
sampling and for total energies in kcal/mol of 44 (red), 46 (magenta), 48 (green), 50 
(brown), and 52 (cyan).  The black lines represent the kinetics model fits. 
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 This range of energies was selected so the radical would be above the respective 

thresholds of isomerization for all of the PESs, but below the classical thresholds for 

dissociation (see Table I). In Figs. 11(a) and 11(b), the decay curves for IMLS and 

XXZLG are fit with a bi-exponential function (shown by the dotted curves in the figure) 

to produce the fast and slow rate constants in Table V for the grid of total energies. In 

contrast, the decay curves, computed using the DMBE-IV PES results, are well fit by a 

single exponential; the values of the parameters from the fits are given in Table V.  The 

bi-exponential rate constants of isomerization for statistical initial conditions can be 

interpreted by using the graphical representation in Fig. 12 of the rate constants in Table 

V plotted as a function of the total energy above the isomerization barrier on each PES 

(see Table I). The results are color coded by PES: red, IMLS; blue, XXZLG; magenta, 

DMBE-IV.  The two solid straight lines at the bottom of the plot are the linear least 

squares fits to the slower EMS isomerization rate constants for IMLS and XXZLG. The 

three dotted straight lines in the figure are the linear least-squares fits to the faster IMLS 

and XXZLG EMS isomerization rate constants and the single DMBE-IV statistical 

isomerization rate constants. The open symbols (squares, triangles, diamonds) are in 

order the OO*, OOH*, and OH* isomerization rate constants for DMBE-IV or IMLS and 

XXZLG (only the rate with the largest prefactor).  (The OOH* XXZLG faster 

isomerization rate of 5.01 ps-1, the largest rate in Table IV, is off the scale of the plot.)  

The total energy in excess of the isomerization barrier is used for the x axis in this plot to 

make a side-by-side comparison of the rate constants clearer. 
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Figure 12 Rate constants for isomerization from Table V plotted as functions of the total 
energy above the isomerization barrier (Viso). See text for details 

For IMLS and XXZLG, among the lowest isomerization rate constants are those for 

OO*. These rate constants are somewhat lower than the straight-line fits to the slower 

EMS isomerization rate constant. The likely interpretation is that the slow rate on either 

IMLS or XXZLG is due to a bottleneck in relaxing, from the initial statistical 

distribution, those trajectories that have a high degree of O-O vibrational excitation. The 

calculated rate is a reflection of both isomerization and energy transfer from the O-O 

stretch into the two other degrees of freedom that are coupled to the isomerization saddle 

point. In contrast, among the highest IMLS or XXZLG rate constants are those for either 

OOH* or OH*.  At the same energy, the OH* rate constants are comparable to the faster 

EMS rate constants while the OOH* rate constants are approximately double the faster 
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EMS rate constants (note the OOH* XXZLG rate is off the scale of the plot).  

Consequently, the faster EMS rate constants on IMLS and XXZLG have no significant 

energy transfer bottleneck from either the O-H stretch or the O-O-H bend modes. These 

faster rate constants are a closer measure of isomerization uncomplicated by energy 

transfer issues.  For DMBE-IV, as discussed above, the OO*, OOH*, and OH* 

isomerization rate constants are nearly the same because IVR is fast enough to scramble 

any mode specific initial conditions. Since EMS initial conditions are statistically 

random, it is not surprising that the least-squares fits to the EMS isomerization rate 

constants essentially pass through the mode-specific rate constants. The OO* 

isomerization rate is the lowest below the linear fit to the statistical rate constants and in 

this case, as discussed above, the IVR rate is only double the isomerization rate.  

Interestingly, despite the different topologies seen in the three PESs in Fig. 5, the 

component of the IMLS, XXZLG, and DMBE-IV isomerization rate constants least 

contaminated by IVR effects all have a similar size, within a factor of two, as indicated 

by the dotted lines in Fig. 12. This occurs only if the barrier height is subtracted from the 

total energy, as in Fig. 12, indicating the typical dominance of barrier height over saddle 

point shape is determining the gross features of the rate constant. 

3. Unimolecular dissociation 

The mode specific behavior found in IVR and isomerization motivates a similar 

investigation for the unimolecular dissociation of HO2 → H + O2. As discussed earlier, 

only the XXZLG and DMBE-IV PESs are fully specified at this limit and can be studied. 

Marques and Varandas70 carried out exactly such a study on the DMBE-IV PES, portions 
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of which we repeat with more trajectories and extend to XXZLG. As discussed in Sec. 

C.1 we used fractional vibrational quantum numbers on the XXZLG PES in order to 

preserve the same total energies above De. The approximate total energy listed in Table 

III is the average energy for all six mode-specific runs.  While the energy in any excited 

mode is always below the dissociation energy, the energy of the OH* mode is especially 

close to the dissociation energy being only ≈0.1 kcal/mol and ≈0.2 kcal/mol below the 

dissociation limits for the DMBE-IV and XXZLG PESs, respectively.  In addition to 

mode-specific initial conditions, Marques and Varandas70 also studied statistical initial 

conditions at one dissociative energy, which we repeat and extend to the XXZLG PES at 

a shifted total energy to preserve the excess energy above De. The resulting unimolecular 

decay curves are shown in Fig. 13 and the rate constants derived from them in Table VI. 

The DMBE-IV results are consistent106 with the results of Marques and Varandas. 
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Table VI For HO2 → H + O2, unimolecular dissociation rate constants (ps-1), prefactors, and latency times (ps) under different initial 
conditions as a function of the total energy for the two different PESs. The energy in parenthesis is the amount of energy in excess of 
the De in Table I. 

Initial 
conditions 

Energy 
(kcal/mol) 

DMBE-IV Energy 
(kcal/mol) 

XXZLG 

  A k1 B k2 t0  A k1 B k2 t0 
OO* 58.79(3.95) 1.18 0.69   0.29 57.63(3.95) 1.18 0.47   0.41 
OOH* 58.74(3.90) 1.00 0.76    57.57(3.89) 0.79a 0.49a 0.25a 1.04a 0.10 
OH 58.26(3.41) 0.86 0.67    57.09(3.41) 0.47 0.45 0.41 12.5  
EMS 59.43(4.59) 1.00 0.89    58.27(4.59) 0.87 0.62 0.10 3.32  

a The least squares solution shows an rms fitting error that is a weak function of correlated small changes in k1 and large changes in 
k2.  Many more trajectories would be needed to determine k2 with a precision comparable to other entries in the table. 
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Figure 13 For the XXZLG (a) and DMBE-IV (b) PESs, the population decay as a 
function of time due to unimolecular dissociation to H + O2 for initial conditions of 
mode-specific excitation [OO* (red), OOH* (magenta), OH* (green)] or for initial 
conditions selected using EMS (J=0) sampling (brown). The black lines represent the 
kinetics model fits.  Inserts in each panel magnify the results at early times.  See text for 
details. 

 
Three points about the results in Fig. 13 and Table VI are worth noting.  First, in Fig. 

13 on both PESs there are significant early time behaviors that cause the mode-specific 
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population decays to generally be distinct from each other. The early time decay for each 

excitation mode will now be considered in the order OO*, OH*, and OOH*. 

On both PESs, OO* has the most pronounced latency effects as detected by the 

procedure outlined in Appendix I. Comparisons of Fig. 13 and Table VI for dissociation 

with Fig. 4 and Table V for isomerization shows that the latency effects in OO* 

dissociation are similar in form but shorter than those for OO* isomerization on both 

PESs. Since insufficiently fast IVR rate constants are a likely source of this latency for 

isomerization, can IVR OO* rate constants at dissociation energies be estimated?  For 

XXZLG, the linear extrapolation of the OO* IVR rate constants in Table IV produce a 

rate at the OO* dissociation energy of Table VI that is ≈0.4 ps-1, less than but comparable 

to the OO* dissociation rate, a situation analogous to that in isomerization. This 

extrapolation is bolstered by the fact that, as discussed above, the slower EMS 

isomerization rate is thought to track the OO* IVR rate.  As seen in Fig. 12, this slow rate 

is reasonably well approximated as a linear function of energy. Extension of this linear 

function to dissociation energies requires an extrapolation over half the energy range 

required with extrapolation using Table IV. The end result is a slow rate component of 

isomerization that is higher than but comparable to the dissociation rate. Thus the latency 

in OO* dissociation likely has the same cause as the latency in isomerization with OO*. 

The latency in OO* dissociation is shorter than that for isomerization because both IVR 

and dissociation rate constants are higher at the higher energy. For DMBE-IV, 

extrapolations from Table IV are dubious because, as commented above, the IVR rate 

constants in Table IV decrease with energy, a result most unlikely to persist at higher 

energies. Furthermore, there is no particular reason to correlate OO* IVR rate constants 
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on the DMBE IV with EMS isomerization rate constants.  However, unlike the case for 

XXZLG, the results in Tables V and VI show that the OO* isomerization rate at the 

higher energy at which IVR was calculated is almost identical to the OO* dissociation 

rate. Thus if the IVR rate constants were to just flatten out with energy or modestly 

increase, the relationship of IVR rate constants to dissociation rate constants would be 

comparable to that for isomerization. Since IVR is faster for DMBE-IV than XXZLG, for 

both isomerization and dissociation the latency time is shorter for DMBE-IV than for 

XXZLG. Since this scenario does not involve a significant increase in any of the rate 

constants from that for isomerization, the latency time at dissociation is closer to that for 

isomerization than is the case for XXZLG.  

For OH*, there is no latency time on either PES. However, as the inserts in Fig. 13 

show, ≈10% of the population has the last inner turning point in negative time. In other 

words, 10% of the trajectories are ballistic, that is they are created with initial conditions 

that directly lead to dissociation.104,33107 As seen in Tables I and III, the OH* excitation 

energy is only ≈0.2 kcal/mol below the dissociation energy and trajectories need to gain 

only a few tenths of a kcal/mol from the other two modes to dissociate.  The OH* results 

on the DMBE-IV PES suggest that trajectories that have one inner turning point are much 

more likely to lose significant energy out of the OH stretch and begin a statistical 

repopulation of the phase space of the dissociative coordinate.  However, the OH* results 

on the XXZLG PES suggest that a few turning points do not significantly decrease the 

energy in the OH stretch, allowing trajectories during each expansion phase of the OH 

stretch to acquire from the two other modes the small amount of energy they need to 

dissociate.  The difference between the two PESs is undoubtedly a reflection of the order 
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of magnitude higher OH* IVR rate for DMBE-IV relative to XXZLG seen in Table IV 

for lower total energies. This difference is reflected in the fit to the two different 

dissociation decay curves. For DMBE-IV, the fitting error is not sensitive to the very 

early time behavior, so although the local fitting error is an order of magnitude larger 

than at any other time, the ≈5 fs duration of this very large local error is overwhelmed by 

minimizing the global error over the remaining 10 ps of decay. For related reasons, this 

initial short period is not recognized as a latency time by the procedure outlined in Sec. 

B.2 However, for XXZLG because the ballistic-like mechanism persists much longer, bi-

exponential behavior results with the very rapid process having a rate constant of ≈13 ps-1 

(see Table VI). Since the vibrational period of the O-H stretch is ≈10 fs, the inverse of 

this fast rate ≈75 fs implies that for half a dozen vibrational periods the OH* retains 

sufficient energy for the radical to undergo ballistic dissociation before enough energy is 

lost out of the OH stretch to require the statistical reassembly of sufficient energy107 to 

dissociate. 

For OOH*, there is no latency on the DMBE-IV PES.  This is as expected because 

any reasonable extrapolation of the OOH* IVR results in Table IV to dissociation 

energies would have OOH* IVR more than an order of magnitude larger than the OOH* 

dissociation rate in Table VI. However, for XXZLG, doing the same would have IVR 

rate constants somewhat higher than but comparable to the OOH* dissociation rate 

constants. This would suggest, based on the arguments in the OO* case, a noticeable 

latency time for dissociation. There is in fact a latency time of only 60 fs, which is too 

short to influence the OOH* dissociation rate. The reason for such a small latency was 

discussed in connection with Figs. 7 and 8. These IVR figures show plots of mode 
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specific energies as a function of time, but the initial distributions in the figures show 

much less OOH energy and much more OH energy. The explanation is a massive 

redistribution of the initial mode-specific energy in tens of femtoseconds that cannot be 

distinguished within the time resolution of the figures.  This is particularly prominent at 

the higher energy (see Fig. 8) where the OH mode appears to start with the asymptotic 

energy.   

This short time redistribution is due at least in part to the breakdown in the normal 

mode approximation in the initial conditions preparation. However, the normal mode 

approximation is more valid for the O-O-H bending potential than it is for the stretches.  

For the stretches, compression leads to a rapid increase in repulsive energy not well 

described by the harmonic potential of normal modes. In the bending potential, both 

compression and expansion lead to a barrier through a symmetry plane (see Fig. 5) on all 

three PESs. In HO2, the isomerization barrier is lower than, but comparable to, the barrier 

through the collinear geometry. Consequently, the harmonic potential is a somewhat 

better approximation of the anharmonic potential than it is for the stretches.   

Beyond the breakdown of the normal mode approximation, the ballistic mechanism 

discussed above for OH* suggests a second very rapid energy transfer mechanism. A 

careful examination of the early time OOH* populations shown in the inserts in Fig. 10 

reveals a behavior for OOH* isomerization similar to that seen in the inserts in Fig. 13 

for OH* dissociation. A ballistic interpretation of these isomerization population features 

would have been clearer if a turning point definition in terms of the last O-O-H bend 

turning point had been used, because that would have led to negative lifetimes for 

rigorously ballistic trajectories as is the case for OH* dissociation. Isomerization might 
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very well accelerate energy transfer out of OOH*. The massive redistribution of energy 

in the OOH* IVR case occurs on the same timescale as ballistic isomerization, namely a 

few oscillations of the bending mode. This redistribution is much more pronounced in 

Fig. 8 for energies above dissociation than in Fig. 7 for energies below dissociation. This 

redistribution is also somewhat more pronounced for OOH* than for OH*.  Finally, as 

seen in Figs. 7 and 8, the primary beneficiary of loss of energy out of OOH* is the OH 

mode which is the reaction coordinate for dissociation. Energy flow between bending and 

stretching modes can be especially facile; see, for example, Refs. 24(a) and 108.  Thus 

the breakdown in the normal mode approximation and ballistic isomerization could both 

contribute to very early IVR and unexpected short dissociation latency times for OOH* 

on XXZLG.  Furthermore, OOH* dissociation on XXZLG obeys bi-exponential behavior 

like that for OH* dissociation (see Table VI). The larger secondary rate constant for 

OOH*, although much smaller than the larger OH* rate constant and with half the 

amplitude, may be due to ballistic trajectories.  In the case of OOH,* a probable source of 

the ballistic dissociative trajectories may well be ballistic isomerization which, as long as 

it lasts, initially pumps energy into the OH reaction coordinate to accelerate 

dissociation.104  

The second conclusion that can be drawn from Fig. 13 and Table IV is that both PESs 

display, at best, modest mode-specific effects in unimolecular dissociation.  While Fig. 

13 has distinct curves depending on the mode excited, especially for XXZLG, those 

differences primarily reflect the latency and ballistic effects at early times discussed 

extensively above. As shown in Table VI, the dominant rate constants from the mode 

specific conditions are quite similar to each other with only an 8% (5%) maximum 
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deviation from the average for DMBE-IV (XXZLG). If plotted as functions of energy, 

these mode-specific unimolecular dissociation rate constants on both surfaces are 

reasonably consistent with the EMS dissociation rate constants at somewhat higher 

energies.  In the case of isomerization, mode-specific effects for XXZLG, especially for 

OO*, are prominent and comparison with the IVR rate constants calculated at the same 

energy suggests competition between IVR and isomerization.  For OH* and OOH* 

dissociation on both surfaces, IVR is generally fast enough to not be a substantial 

bottleneck to dissociation. For OO*, IVR at short times is slow enough to cause latency 

effects on both PESs. However, for DMBE-IV, Fig. 12 would suggest that the 

isomerization rate at the OO* dissociation energy will be on the order of 5 times higher 

than the OO* dissociation rate in Table VI. For XXZLG, as discussed previously, the 

slower component of the EMS isomerization rate is associated with the OO* 

isomerization rate and at the OO* dissociation energy it would be at least double the OO* 

dissociation rate in Table VI. To the degree that isomerization drives energy transfer, the 

IVR rate at early times that influences latency may not be the IVR rate operational over 

the bulk of the unimolecular dissociation after the latency time. 

The third and final conclusion is that, as can be seen from Table VI, DMBE-IV 

produces unimolecular dissociation rate constants that are approximately 50% larger than 

does the XXZLG at the same excess energy over the dissociation energy. There have 

been four previous studies55,78,79,80 that compared reactions on these two PESs but all of 

them were quantum dynamics studies of reactions (1a) and (1b), not the unimolecular 

reaction (1c) considered here. The more relevant studies78,79 with H + O2 as reactants 

predicted a lower reaction probability for XXZLG relative to DMBE-IV. The two other 
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studies55,80 with O + OH as reactants found that only at intermediate energies was 

XXZLG more reactive. The results in Table VI are thus consistent with the general 

observation that XXZLG is less reactive than DMBE-IV.  The quantum dynamics 

studies81 also make clear that the reaction dynamics of HO2 is dominated by quantum 

mechanical resonances unrepresented in classical trajectories that can result in large 

discrepancies in classical microcanonical and even canonical rate constants relative to 

their quantum analogs.   

One last point concerning Table VI is the relationship between two bi-exponential 

cases in the table: OH* and EMS dissociation on XXZLG.  (The XXZLG OOH* case is 

also bi-exponential but not to a degree sufficient to influence the following discussion.)  

The OH* case is described above as a combination of an early time ballistic-type 

dissociation process and the usual statistical dissociation process. Most likely the EMS 

behavior is bi-exponential because it contains a faint hint of the OH* ballistic process. If 

one assumes that the EMS distributed energy is approximated by an equal mix of OO*, 

OOH*, and OH* initial conditions, then the quite similar slow rate constants of OO*, 

OOH*, and OH* would be reflected in a similar EMS rate that has increased due to the 

higher total energy, and more particularly the relatively higher excess energy, for the 

EMS case. However the fast OH* rate constants should also be reflected in a fast EMS 

rate, with only 1/3 weight to the prefactor if we assume that each mode contributes 

equally, or ≈0.13.  In fact the amplitude of the fast EMS rate  is ≈0.10.  This fast rate, 

while ≈5 times faster than the slow rate, is also about 3 times slower than the OH* fast 

rate. These differences are probably due to both absorbing the latency features of the 

OO* dissociation and the severity of approximating EMS by equal portions of OO*, 
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OOH*, and OH*. While this approximation is indeed severe, the EMS case produces 

some trajectories with last inner turning points prior to dissociation occurring at negative 

times. Even though the energy is statistically distributed, some trajectories do have OH 

energies comparable to the dissociation energy as the above interpretation suggests.   

D. Conclusions 

Three PESs for HO2 have been comparatively examined for their characterization 

of equilibrium, isomerization, and dissociation energies, structures, and quantum 

variational vibrational frequencies, phase space structures using surfaces-of-section, and 

for IVR, isomerization, and dissociation trajectory dynamics.  Two of the PESs, DMBE-

IV50 and XXZLG53,54,55,56 have been fully described in the literature while the third 

surface, IMLS, has been only introduced in the literature56 and is more fully described 

here.  The two most recent PESs, XXZLG and IMLS, are based on higher quality and 

more systematically distributed ab initio electronic structure calculations than the 

DMBE-IV, a PES for HO2 that has been used in many studies. The XXZLG and IMLS 

differ in the manner in which the electronic structure calculations are fit and a slight 

improvement in the quality of the ab initio method in going from XXZLG to IMLS.  

These two PESs are not without limitations with IMLS not being globally characterized 

up to the lowest dissociation channel and XXZLG displaying small violations of 

permutation symmetry and some fitting imperfections due to data sparsity. 

The major conclusions of this study are: 

• The IMLS and XXZLG are quite similar and of high quality. In comparison to 

experiment, the rms error of IMLS and XXZLG vibrational frequencies is ≈10 cm-1 
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while the dissociation energy is too low by ≈0.2 kcal/mol for IMLS and ≈0.8 kcal/mol 

for XXZLG. Surfaces-of-section plots as a function of energy show consistent and 

comparable phase space structures for trajectories calculated on both the IMLS and 

XXZLG. Irregular phase space structure is first apparent at energies near the 

isomerization barrier. The structured nature of phase space gives rise to slow and 

roughly comparable IVR processes on both PESs. The relaxation of excited OO stretch 

is especially slow. Slow IVR in turn leads to prominent mode-specific effects in 

isomerization (on both PESs) and dissociation (only accessible on XXZLG).  Since 

IVR is not fast enough to redistribute the initial vibrational energy, even for the initial 

conditions selected by using EMS isomerization, decay curves display double 

exponential behavior with the slower rate correlated with slow IVR rate constants. The 

likely source of this slow IVR is energy initially localized in the OO stretch.  The 

longer it takes for a trajectory, with sufficient energy, to isomerize; the more probable it 

becomes that energy has been localized in the OO mode.  As the OO mode becomes 

progressively enriched with energy the chance for isomerization decrease. In other 

words, isomerization acts as a filter that over time that can leave behind a population 

highly excited in the OO stretching mode.  

• In detail XXZLG and IMLS do display somewhat different dynamics. The heights of 

the isomerization saddle points on the two PESs differ by ≈2.0 kcal/mol. (This is 

primarily due to sparsity in the XXZLG ab initio database around the symmetry plane 

of the surface and not differences in the underlying electronic structure calculations). 

Results sensitive to isomerization have an energy dependence shifted approximately by 
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that amount. The IVR rate constants computed on the two PESs differ by a factor of 

two for some initial conditions.   

• The DMBE-IV PES displays many different characteristics relative to IMLS and 

XXZLG.  It does not compare well to experiment with ≈100 cm-1 rms errors in 

vibrational frequencies and ≈0.7 kcal/mol overestimation of the dissociation energy.  

The surfaces-of-section plots show a more irregular phase space structure starting at 

energies that are half the isomerization barrier height. The IVR decay rate constants are 

nearly an order of magnitude faster than those for IMLS and XXZLG. As a 

consequence, mode-specific effects on isomerization and unimolecular dissociation are 

much less prominent and single exponential decay indicative of statistical behavior was 

found.  

• The isomerization and unimolecular dissociation rate constants were determined with a 

kinetics model that identified early time latency effects by comparing the fitting error to 

the sampling error due to the finite number of trajectories in each simulation. This 

approach works reasonably well.  In a related fashion, the IVR decay on all three PESs 

was analyzed with a kinetics model based on an asymptotic limit of equipartition of 

energy and on mode-to-mode energy transfer rate constants that are proportional to the 

amount of energy in the initial mode. This model also works well and represents the 

IVR features on all three PESs at energies above and below isomerization. However, 

the derived mode-to-mode rate constants were sometimes negative and therefore not 

physically meaningful, reducing the model to a phenomenological one. This may be 

due to the effects of resonances13(a),108 on the energy transfer that are not accounted for 

in the model.   
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• Dissociation rate constants could only be determined on XXZLG and DMBE-IV. On 

both surfaces, latency times due to slow energy transfer and fast ballistic processes 

result in population decays that are distinctly different.  However, after these early time 

effects, the dominant dissociation rate constants are at best only modestly sensitive to 

initial mode-specific excitations.  As is true for bimolecular reactions, XXZLG has a 

lower dissociation rate constant than DMBE-IV at comparable energies above the 

dissociation limit. 

On balance the IMLS and XXZLG are the PESs of choice with IMLS slightly 

superior because of better energetics and a more reliable description of isomerization.  

However, the IMLS at present cannot be used for dynamics studies at energies above 

dissociation without incorporating additional ab initio information.   

E. Directions of Future Research 

There are three directions of research that could be conducted on the dynamics and 

reactivity of HO2.  The first direction is investigating the quantum mechanical effect of 

tunneling which cannot be accounted for due to the classical nature of these studies.  The 

effect of proton tunneling would be manifest by vibrational line splitting and by an 

enhanced rate of isomerization.  There have been similar studies done with the hydrogen 

peroxyl anion.109 The PESs of the anion and the radical share some similar topological 

characteristics, such as the symmetric hydrogen wells and a barrier to isomerization.  On 

the anion PES the classical barrier to isomerization is ≈17 kcal/mol, which is a little 

under half the barrier height of the radical.  At the isomerization saddle point the O-O 

bond length is elongated relative to the bond distance at the minima as it is with the 

radical.  The higher barrier to isomerization on the radical could result in tunneling being 
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less important at lower energies.  Previous studies of proton transfer studies with the 

anion found mode specific effects with excitation of the O-O-H mode contributing to the 

largest splitting factors and there was mode specific enhancement from excitation of the 

O-O mode.  It would also be of interest to see if the lower isomerization barrier with the 

anion would lead to enhanced IVR compared to the IVR found with the radical. 

The second direction of future research with HO2 is related to the reactivity of the 

radical.  The study conducted so far only looked at the dissociation of the radical in a 

very narrow energy range, but in this energy range modest mode specific effects were 

found and the lifetime of the radical was bi-exponential.  A general study of the 

dissociation reactions, across a larger energy range, could give more insight into the 

nonstatistical dynamics of the radical.  Such trajectory studies would be complemented 

by comparison to predictions from statistical rate calculations.  Monte Carlo variational 

transition state theory (MCVTST), 110given the barrierless nature of the H-O bond fission, 

would be useful for comparison since the study can be conducted on the same potential 

energy surface as the trajectory study, which would facilitate a direct comparison.  A rate 

in MCVTST theory is calculated using24(a),110(b) 
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where Γ is the phase space of the system, H(Γ) is the Hamiltonian with no motion of the 

center of mass, qRC is the reaction coordinate which is a function of the other coordinates 

q, qC is the value required for reaction or a dividing surface and TCq is the flux through qC  

MCVTST rate constants have previously been interpreted as the upper limit to rate 
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constants calculated by trajectories.  This means that the inequality k(E)MCVTST  < k(E)traj 

would be observed if the trajectories did not sample all of the energetically accessible 

phase space.  Such a comparison would be useful in further understanding the dynamics 

of HO2. 

We investigated the energy transfer between the vibrational modes of HO2 on 

three different PESs and found evidence of different timescales of relaxation which was 

shown to be dependent on the potential energy surface used.111  However, in these studies 

the radical was not rotating. The final proposed direction of future research would focus 

on understanding the coupling between rotation and vibration. Frederick et al. 112  used 

trajectories to study OCS and SO2  and found that large scale energy transfer between 

rotation and vibration (R-V) readily occurred.  It is probable that centrifugal effects from 

rotation motion could influence the rate constants of isomerization and dissociation in 

HO2. 
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IV. Dynamics of Hydrogen Peroxyl Radical in a Dense Gas 

Environment 

A. Introduction 

Understanding intermolecular energy transfer is an important step in the mechanistic 

understanding of H2/O2 combustion.  We are interested in the collisional deactivation of 

HO2, because the transfer of energy into and out of the internal motions of the radical will 

ultimately control whether the radical stabilizes or reacts.  If the energized radical 

decomposes, it propagates the free radical chain; if it is stabilized by collisions, the free 

radical chain terminates.  Kinetics modeling of HO2 in combustion environments requires 

mapping out a large number of interconnected reaction pathways and the associated 

reaction and energy transfer rates, but possible inaccuracies in the time constants used in 

parameterizing combustion models can result in disagreements between theoretical 

predictions and experimental results.113  Completely resolving all of the discrepancies 

between theory and experiment is a monumental task, so in hopes of contributing useful 

information about the rich chemistry of this radical, we continue with a “from the bottom 

up” approach on HO2.  In chapter III, which has been published,111 we focused on the 

intramolecular dynamics of the radical and found complex dynamics and multiple 

timescales for energy transfer amongst the vibrational modes of the radical, which affect 

the unimolecular dissociation of the radical.  In a similar spirit we next focus on studying 

the deactivation of a vibrationally excited HO2 in a dense-gas environment. 

We have chosen to simulate vibrationally excited HO2 in an argon bath.  Argon was 

selected as the solvent bath to avoid any possible phase change of the medium, since the 
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Ar bath was simulated at the temperatures and pressures above the experimental critical 

point.114  The timescales for relaxation in a dense gas or liquid environment are 

commonly discussed in the context of two physical processes: T1 for vibrationally 

deactivating collisions and T2 for elastic collisions that dephase the motion of the 

solute.115  The isolated binary collision approximation (IBC) is commonly used to 

calculate the timescale and behavior of T1 as a function of density.  Litovitz116 was one of 

the first to apply a gas phase binary collision model in describing relaxation of an excited 

species in a liquid.  The gist of this theory is that relaxation of a vibrationally excited 

species in a fluid can be described as a series of isolated collision events that are 

uncorrelated from one another.  The effect of density on the energy transfer process can 

be described by a simple multiplication of an energy transfer probability with the 

collision frequency.  The energy transfer probability is assumed to be independent of the 

internal energy of the solute.  The collision frequency is calculated for the particular 

density or pressure of the system; at the simplest approximation the collision frequency is 

based on hard sphere model.   

Early debates concerning the validity of IBC theory centered on neglecting the 

possible effects of many body collisions.117  Herzfeld118 pointed out that infrequent, high 

energy collisions would contribute the most to energy transfer into and out of the 

vibrational degrees of freedom, so solute relaxation consists of a large number of elastic 

collisions punctuated with occasional inelastic collisions.  Davis and Oppenheim119 

revised the definition of IBC by using a pairwise radial distribution function (RDF) to 

implicitly include many body effects in the collision definition.  Their definition of 

collision frequency is 

99



 

84 

2/1
2 )(4 















TRgRvc ,       (22) 

where 4πR2 defines a spherical shell at R, ρ is the system density, g(R) is the RDF 

evaluated at R and  [κT/πμ]1/2 is the average thermal velocity representing the flux of the 

bath gas through the shell.  They also emphasized that the only important collisions are 

those that explore high energy regions of the potential, along the same lines of reasoning 

as Herzfeld.  Dardi and Cukier120 put forth an interesting criticism that the selection of R 

in Eq. (22) is arbitrary and a sensible collision radius cannot be defined for both low and 

high density regions.  They pointed to and reanalyzed the experimental work of Châtelet 

et al.121 on the relaxation of H2 and showed that the relaxation time constants at higher 

densities do not extrapolate to the low-density predictions. 

The proposal that high energy collisions are the dominant source of relaxation was 

explored by Ohmine,122 using simulations of excited ethylene in both Ar and H2O. 

Ohmine found for Ar that high energy collisions, which explore the repulsive wall of the 

potential, dominate the relaxation, but multistep vibration-to-rotation (V-R) energy 

transfer followed by rotational energy transfer into the bath plays a role.  Relaxation in 

water was found to involve much shorter timescales, which Ohmine attributed to the 

much stronger electrostatic interactions with the solute and the rapid response of the 

solvent to rearrangements in the system.  Modifying the Ar-ethylene parameters to 

increase the magnitude of the interaction was found to accelerate the relaxation. 

Schultz et al.19a studied the relaxation of azulene in a rare gas solvent and used the 

Davis and Oppenheim definition of collision frequency to understand the weak density 

dependence of the relaxation. They found that the implicit assumption of spherical 
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symmetry in this collision model led to an over-estimation of the actual density 

dependence of the relaxation. Using MD simulations with a rigid azulene embedded in a 

dense bath, they found that the anisotropy of the solute and the intermolecular potential 

led to a density independent packing above and below the azulene rings.  They illustrated 

this anisotropy by calculating RDFs with explicit consideration of the spatial orientation 

of the solute.  These RDFs indicate a much higher local density in the region above and 

below the plane of the molecule, particularly at higher densities.  They suggest that the 

bath-gas packing could inhibit the energy transfer out of the azulene; because, the lowest 

frequency modes in the molecule involve out-of-plane motion that could be constricted 

by the packing of the bath gas atoms.   

Schwarzer et al.19b studied the vibrational relaxation of excited azulene in several 

solvents by monitoring the decay of a UV absorption band. At higher pressures 

corresponding to liquid densities there was a fast initial decay of the signal, which 

became increasingly exponential-like at longer times.  They found a nonlinear 

dependence between the relaxation times of azulene and solvent density in Xe, CO2, and 

C2H6.  They ruled out local heat conduction because aphysical adjustments to the model 

would have to be made to fit the data.  They also reasoned that IVR was unimportant 

since the deviations from linear behavior occurred at different scaled collision 

frequencies for the various bath gases.  In other words, they reasoned that IVR was not a 

limiting factor since the deviation from linear behavior did not occur at the same collision 

frequency.  They proposed a simple adsorption model of azulene forming collision 

complexes with the bath gas which they posited would decrease the collision frequency 

and consequently inhibit energy transfer.  They assumed that the reduction in the 
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collision frequency would be linearly dependent on the fractional coverage of the solute 

by the bath gas atoms.  They found that the model gave agreement at lower densities, but 

failed at higher densities. They postulated that a change in the average energy transferred 

per collision could account for the failure of the model at higher densities.  

Benzler et al.123 did a similar UV absorption study to measure the relaxation of 

cycloheptatriene and found a nonlinear density dependence on the relaxation timescales 

as the solvent density increased. Along a similar line of reasoning as used by Schwarzer 

et al.,19b they concluded that local heating and IVR were not important factors in the 

nonlinear density dependence of the relaxation.  They proposed a modified version 

collision-complex model of Schwarzer et al., except that fractional coverage of the solute 

by the bath gas atoms was assumed to follow exponential dependence, rather than a linear 

one. This model gave acceptable fits to the experimental data and they noted that 

saturation of the spectral shift in the absorption band at higher pressure could be related 

to the effect of bath gas atoms clustering around the solute,124 but additional work would 

be needed to confirm this model. 

A series of trajectory studies125 on the relaxation of excited azulene embedded in 

CO2
125

 and Xe125(b) were motivated by the density dependent relaxation time constants 

observed by both Schwarzer et al.19c and Benzler et al.123  The first study by Heildelbach 

et al.125(a) consisted of simulations at two different pressures and two different 

temperatures.  The azulene was simulated with two different PES models: one which 

reduced the number of intramolecular parameters and constrained C-H bonds and one 

which represented the full motion of the intramolecular potential.  The CO2 molecules 

were also represented with reduced and full PESs, which were used with the respective 
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reduced and full azulene PESs.  The authors of this study focused on investigating gross 

relaxation time constants, local heating effects, collision frequency calculations and the 

local structure of the solvent.  The second trajectory study125(b) was directed towards 

investigating how the vibrational modes of azulene coupled to the bath and how the time 

constants of energy loss occurred on a mode-by-mode basis. 

Heildelbach et al.125(a) found in the first study that the gross relaxation time constants 

could be fit to a single exponential for both the low and high pressure simulations.  It 

should be noted that the integration time for the lower pressure (250 atm) is ≈3 times 

shorter than the experimental timescale reported by either Schultz et al.19a or Schwarzer 

et al.19b  The high pressure results were simulated for ≈1/8th of the reported experimental 

timescales of Schwarzer et al. for comparable pressures.  The short timescales of these 

simulations and incomplete relaxation of the azulene preclude making any additional 

observations about the complete thermalization process.  The relaxation was heavily 

influenced by whether full or reduced PES representations of the azulene and CO2 were 

used.  No evidence of local heating was found in examining the kinetic energy of the bath 

atoms in close proximity to the solute.  The structure of the bath around the solute was 

found to be anisotropic, but the anisotropy above and below the plane of the azulene was 

related only qualitatively to the calculated RDFs and the explicit orientation of azulene 

was not considered.  The RDFs calculated by Schultz et al.19a are much more illustrative 

of this anisotropy.  The formation of bath gas-solute collision complexes, which were an 

earlier suggested cause of nonlinear density dependence of relaxation timescales, was not 

investigated 
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The interaction of the vibrational modes with the bath was the motivation for the 

second paper with the focus being primarily on the CO2 bath.  The simulation details 

were similar to those described in the first paper.  The second study also contained details 

of additional simulations of azulene embedded in Xe.  Heildelbach et al.125(b) found that 

energy loss from azulene in low pressure CO2 occurred primarily through the low 

frequency modes, but at elevated pressures the higher frequency modes began to have a 

larger role in the relaxation process.  The relaxation in Xe occurred primarily through the 

low frequency modes.  In both cases the low frequency motion corresponding to 

out-of-plane modes of the molecule contributed the most to the energy transfer.  They 

also found that the translational and rotational energy of the molecule relaxed rather 

quickly and that V-R transfer was unimportant in the relaxation.  They also studied the 

IVR of isolated azulene using both simulated frictional forces and simple non-

equilibrium distributions of energy amongst the vibrational degrees of freedom.  They 

found that the relaxation of the modes in the isolated molecule happened on longer 

timescales and that non-equilibrium energy distributions could occur.  They proposed that 

the solvent plays a role in facilitating the IVR, which ultimately led to single timescale 

for energy loss to the bath. 

Paul et al.19c studied the relaxation of hexafluorobenzene embedded in a bath of N2 at 

several densities using classical trajectories, at a single bath temperature of 298 K.  The 

initial state of the C6F6 was vibrationally hot. The translational and rotational motion of 

the molecular was selected to be thermal.  They found only minimal V-R energy transfer 

occurring during the relaxation process.  The effect of the intermolecular potential on 

relaxation dynamics was examined and determined to have minimal effect.  Most of the 
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energy lost by the solute was transferred to the translational and rotational degrees of 

freedom in the bath.  The relaxation of the solute was well fit by a bi-exponential 

function with the asymptotic energy being treated as an adjustable parameter.  Based on 

the asymptotic energy of C6F6 they concluded that a bi-exponential was best suited for 

lower densities and that additional exponential terms would be needed to properly model 

the higher density results. The groups of 96 trajectories that were simulated for each 

density were decomposed into smaller subgroups for analysis of the number of 

trajectories needed to converged results.  It was found the same general behavior and 

fitting results could be obtained with a sample of 24 trajectories.  Interestingly, it appears 

that Paul et al. were not aware that the nonlinear density dependence of the relaxation 

time constants they observed is quite similar to the trends seen in the results of Benzler et 

al.123 and Schwarzer et al.19b  An interesting contrast between these two studies is that the 

relaxation of C6F6 was found to be bi-exponential instead of single exponential. 

To our knowledge there are only two studies of the collisional relaxation of 

vibrationally excited HO2 and both are based on bimolecular trajectory scattering.  The 

first study, by Brown and Miller,126 focused on the deactivation of HO2 by collisions with 

He as a function of bath temperature, total molecular energy, and total angular 

momentum.  They concluded that there are two ways that HO2 is vibrationally 

deactivated.  Low temperature collisions (800 K) with a rotationally cold radical tended 

to cause an internal V-R energy transfer.  Hotter collisions (2,000 and 5,000 K) with the 

bath gas with a rotationally excited HO2 resulted in more direct loss of vibrational energy 

to translational energy of the radical.   
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The second study, by Varandas and Zhang,127 focused on the deactivation of HO2 by 

collisions with O2.  The relative translational temperature of O2 colliding HO2 varied 

from ≈300 K to ≈4000 K, and the rotational and vibrational states of O2 were 

approximately assigned to the ground state.  The initial vibrational state of HO2
 consisted 

of three vibrational energies (21, 36, and 48 kcal/mol) that were selected by quasi-

classical excitation.  The rotational temperature of HO2 was ≈300 K.  They found the 

dominant relaxation mechanism was V-R transfer, across all of the impact temperatures, 

and that collisions generally caused a V-R energy transfer. A mechanistic observation 

shared with Brown and Miller.126 They also found that the shape of the distribution of 

energy transferred per collision is only weakly dependent on the initial vibrational energy 

of HO2.  Deactivation by V-T transfer was found to be more important for lower collision 

temperatures. The authors concluded vibration-vibration (V-V) transfer was a minor 

effect, because they found negligible post-collision excitation of the O2 oscillator.   

From the studies discussed above involving larger molecules, there is some evidence 

that the characteristics of vibrational relaxation by collisions with a bath gas change at 

higher pressures.  Based on the experimental results of Schwarzer et al. and 

Benzler et al., there appears to be a slowing of relaxation time constants with increasing 

bath density (pressure).  Similar density effects on relaxation time constants were seen in 

the trajectory study by Paul, et al.  We wish to determine if these density dependent 

effects are a general phenomenon.  Combustion conditions can occur at elevated densities 

(pressures) and it is of interest to assess whether the IBC prediction of linear scaling of 

relaxation time constants as a function of system density holds true in the relaxation of 

small radicals and molecules important to hydrocarbon combustion.  As an initial system, 
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we chose to study the relaxation of vibrationally excited HO2 in a dense gas at a single 

temperature with varying densities (pressures).  We suspect that the single-collision 

relaxation studies of HO2 done so far cannot offer conclusive guidance about the 

timescales of the relaxation process, or whether the density of the bath would have any 

effect on the relaxation mechanism.  The methods are outlined in Sec. B, the results in 

Sec. C, and the conclusions in Sec. D. Future studies are proposed in Sec. E. 

B. Methods 

We have investigated the relaxation of vibrationally excited HO2 in a dense gas with 

classical trajectories.  The methods used in the simulations are similar to the general 

strategies developed by others which have been used to investigate the effect of a dense 

gas environment on isomerization,128 vibrational relaxation,19(c),125 and unimolecular 

decay.129   

All of the simulations were performed using the classical trajectory code GENDYN38 

modified for the dense gas simulations.  The simulations of HO2, embedded in a bath 

across a series of pressures (35, 70, 100, 500, 900, and 1300 atm), consisted of 125 Ar 

atoms with a single HO2 radical.  The bath temperature was 800 K and each ensemble 

consisted of 1,600 trajectories.  Additional tests with larger bath sizes of 250, 500, 750 

and 1000 Ar atoms were also completed at 1300 atm.  The velocity Verlet integrator was 

used for integrating the equations of motion. The integration step size was 0.1 fs and the 

maximum integration time needed to relax HO2 was determined from preliminary 

simulation results.  The use of the velocity Verlet integrator was motivated by the low 

execution cost and long, stable integration behavior shown and discussed in Ch. II Sec. 

D.  Phase space points of the system were recorded every 3 fs for analysis.  

107



 

92 

1. Intermolecular Potentials 

The potential energy for the system is given by  

CellInterHO VVVV 
2

,         (23) 

where 
2HOV is represented by the XXZLG PES54 and InterV is  

ArArArHOInter VVV  
2

 .       (24) 

The intermolecular potential used was the Buckingham potential (Exp-6) where 

ArHOV 2  and ArHOV 2
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The heteroatomic parameters of Aij, Bij , and Cij were obtained using 

jjiiij AAA           (27) 

 jjiiij BBB 
2
1         (28) 

jjiiij CCC           (29) 

The values for the Buckingham parameters are given in Table VII.  Micheal et al.130 

commented that the inclusion of electrostatic forces would lead to improved accuracy in 

modeling the intermolecular interactions of HO2 with the bath gas atoms.  However, such 

considerations are beyond the scope of the present study.  
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The term CellV  refers to the spherical cell potential that was used to confine the 

simulation.  This potential was developed by Marks et al.131 and is a modified Born-

Mayer function 

 
i i

i
cell rR

R
r

V ))(exp(2

2


        (30) 

where  is the potential energy at the radius R of the cell, ri is the distance of the ith atom 

from the center of the cell, and  is a parameter that controls the steepness of the Ar- and 

HO2-wall potentials.  The radius of the cell varied with the desired pressure of simulation, 

while  and  were set to 75 kcal/mol and 6.5 Å-1, respectively. 

Table VII. Values of the intermolecular potential parameters.  

 Ha Oa Ar 

A (kcal/mol) 2202.082 69416.3 69600.0 

B (Å-1) 3.74 3.96 4.04 

C (kcal mol-1 Å-6) 32.5956 347.3498 1295.0 
a. The parameters for H and O were taken from D. C. Sorescu, B. M. Rice, and D. L. 
Thompson, J. Phys. Chem. B 101, 798 (1997).  

The computational cost of evaluating the (n/2)(n-1)+3n interactions scales as n2, 

where the first term is the number of interactions between bath gas atoms, the second 

term is the number of interactions between the reactant atoms and bath atoms, and n is 

the number of bath gas atoms. The computational cost of the potential evaluations was 

minimized by only evaluating the potential energies between atoms that had an 

appreciable interaction.  This was accomplished by smoothly turning off the potential and 

ignoring any interactions greater than a distance of 2.7ij  using a switching function that 

has two continuous derivatives.  The form of this switching function is  
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]])(6)(15)(101,0max[,1min[)( 543
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where  

 g(rij) = (rij -2.5ij)(2.7ij -2.5ij)-1,      (32) 

where the ij are the van der Waals radii and g(rij) is the progress variable of the 

switching function.  The switching function was only applied when g(rij) was between 0 

and 1.  The value of the unmodified potential at the start of the attenuation (rij = 2.5ij is 

≈3% of the magnitude of the potential well depth.  At the end of the attenuation (rij = 

2.7ij  the unmodified potential is ≈2%  of the magnitude of the potential well depth.  

The van der Waals radii of the Exp-6 potentials were located using bisection.32  The use 

of the switching function should have only minor effects on the physical properties of the 

fluid.30  

A neighbor list132 was also used to further reduce the cost of the force calculations by 

excluding pairwise interactions outside the cutoff of 2.7ij. The organization of the 

neighbor list is shown in Table VIII.  The neighbor list consists of two arrays: The first 

contains the number of neighbors of a particular atom and the second contains the 

identification number of the neighboring atom. 
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Table Vlll. A schematic of a neighbor list using a two-anay system. a 

Atom index im(n) rem) Neighbor 
Atom Index 

im(1) 23 ro) 4 

~ 
im(2) 56 rcz) 6 

rc23) 54 
im(n) k rc24) 12 

.. jm(56) 6 

rck) m 
a. Based on Ftg. 5.5 m Hatle, Ref. 30c. 

Updating of the neighbor list was automated monitoring a buffer region out to 2.9aii and 

defming a maximum displacement rmax = 2.9<7i;-2.7 aii. When the sum of the two largest 

atomic displacements, measured from the most recent list update, became greater than or 

equal to r max the list was updated. 

Evaluation of initial conditions and a trajectory of 1 ps duration, calculated for 125 Ar 

atoms at 800 K and 1300 atm with one H0 2 and no reduction in the 8,125 panw ise 

interactions requires ~3 1 0 s of cpu time. Applying the switching function and neighbor 

list in a silnilar traject01y reduced the average number of interactions to ~11 80, and the 

evaluation time of this traject01y was ~so s of cpu time. 

In our previous work on the isolated radical in Ch. III, the gradients from the XXZLG 

were calculated by fmite difference using a central difference f01mula. Also in that work 

we identified a cusp in the potential along a petpendicular bisector with the origin being 

the center of the 0-0 bond. In the region of the cusp, we symmetrized the potential and 

found it sufficiently smoothed the discontinuity. Unforhmately, this increased the 

computational cost of the surface. In an eff01i to improve the efficiency of our simulation 
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in the present work, the gradients of the XXZLG potential were calculated analytically in 

all regions away from the perpendicular bisector.  In the region of the perpendicular 

bisector we evaluate the gradients by finite difference on a symmetrized surface as 

described in Ch. III.  It was necessary to use the mixed numeric and analytic gradients 

because of the previously discussed deficiencies of the XXZLG PES, see Appendix II.  

Using analytic gradients offers an order of magnitude speedup over numerical gradients. 

The evaluation times for 10 ps trajectories including initial conditions that typically 

involved ≈675,000 potential and gradient calls are as follows: 356 s for analytic gradients 

with symmetrized, numerical gradients evaluated in the bisector region; 233 s for pure 

analytic gradients without symmetrization in the bisector region, a procedure that yields 

non-energy conserving trajectories; and 2847 s for numerical evaluation of the gradients 

everywhere including the symmetrized bisector region.  The relative speed up from using 

the mixed analytic and numeric gradients is a factor of eight, while the full analytic 

gradients offer a speed up factor of 12.  The loss of efficiency from the mixed gradient 

solution is due to the overhead of multiple potential energy evaluations needed for 

calculating both the finite-difference gradients and the symmetrization of the potential.   

2. Initial Conditions 

Simulations of vibrationally excited HO2 in a bath gas were performed for a bath 

temperature of 800 K and pressures of 35, 70, 100, 500, 900 and 1300 atm.  The initial 

conditions were done in three sequential steps: (a) Populate the simulation vessel with the 

desired number of bath gas atoms, followed by adjustment of the simulation sphere 

volume to obtain the desired pressure (done once for each pressure); (b) select the initial 

conditions of the HO2; and (c) thermalize the bath gas.  After the third step an NVE 
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trajectory was integrated using the velocity Verlet integrator for a predetermined time 

with a step size of 0.1 fs.  The termination time of a trajectory was based on approximate 

thermalization times from early test simulations.  The lower pressure ensembles were 

integrated for longer times to ensure sufficient relaxation of the HO2. 

a. Cell Size and Pressure 

The following paragraphs are devoted to discussion of populating the reaction 

environment and adjusting the volume to obtain a desired pressure.  The initial volume of 

the simulation vessel was calculated using the ideal gas law for the desired temperature 

and pressure.  This volume was used as a starting point for populating the locations of the 

Ar atoms within the confining potential.  The simulation cell was centered at the origin of 

a Cartesian coordinate frame and the center of mass of the radical was also positioned 

there.   The equilibrium geometry of the radical was obtained using the Stepit133 routine 

interfaced to GENDYN.  The gradients and Hessians of the PES were calculated at this 

geometry to confirm this was the minimized structure of the radical. 

The bath gas atoms were randomly inserted in the simulation cell using a simple 

acceptance/rejection scheme.  A trial placement of a bath gas atom was done by 

randomly selecting the Cartesian coordinates of one of the previously placed atoms, 

adding a random displacement to all three Cartesian coordinates, inserting a test atom at 

the resulting position and evaluating of the potential energy.  The maximum magnitude of 

random displacement in a single direction was taken to be half of the current cell radius. 

The new placement was accepted if the total potential energy remained less than zero; 

otherwise the placement was rejected and a new trial placement was generated. This 
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process was repeated until all of the bath gas atoms were placed in the simulation cell.  A 

larger number of insertion rejections occurred for the higher pressure simulations, which 

required smaller simulation volumes.  A smaller vessel volume has two effects on the 

insertion procedure: First, there was an increased chance of sampling of the repulsive 

spherical wall; second, the sequential placement of bath gas atoms eventually leads to 

packing of the bath gas in which insertions with positive potential energies are more 

likely.  A simple solution to prevent large rejection rates was to start with a larger 

estimated ideal gas volume and correct for the overestimated volume in the pressure 

adjustment trajectory.  The lowest acceptance rate for the cell population procedure was 

≈20%.  

After placing all of the bath gas atoms, a trajectory was integrated for 25 ps with a 0.1 

fs step size and the pressure was equilibrated by changing the volume of the simulation 

cell. The HO2 was held stationary at the center of the cell during this process. This 

pressure equilibration trajectory was started by assigning initial Cartesian velocities to the 

bath gas from one-dimensional Maxwell velocity distributions. Maxwell distributions 

were calculated by sampling a weighted Gaussian distribution. The weighting factor used 

is (miκT)1/2 where  mi is the mass of ith atom, κ is Boltzmann’s constant, and T is the 

temperature.  The Gaussian distributions, for each Cartesian degree of freedom, were 

calculated using the gasdev subroutine from Numerical Recipes.32  Velocities were 

assigned to the bath gas while the radical was held fixed at the center of the simulation 

cell by excluding it from the integration of the equations of motion; however, the 

pairwise interactions of the radical with the Ar atoms were calculated in the equations of 

motion to prevent any aphysical overlaps.  
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 After selecting the initial velocities of the bath atoms, a trajectory was integrated and 

after each integration step the instantaneous average kinetic energy (temperature) was 

calculated using30  


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
m

ppp
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T zyx
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222

3
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

,       (33) 

where N is the number of bath atoms, and px, py, pz are the Cartesian momentum 

components of each atom.  After evaluating the temperature, the pressure was calculated 

using30 
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where  is the current number density, TI is the result of Eq. 33, V is the current volume 

of the sphere at the value of R in equation 30, and ∑∑rij∙F(rij) is the virial from the 

interatomic forces F(rij).  Both the temperature and pressure were smoothed by a rolling 

average134 with a 200 fs window (2,000 integration steps): 
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n
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G )1()(...)1()(1 ,    (35) 

where each G(i) is either an instantaneous temperature or pressure, n is the total number 

of samples in the window and Groll is the value of the rolling average of either 

temperature or pressure. After every 1000 integration steps (100 fs), the rolling average 

temperature of the bath was compared to the desired temperature and if the absolute 

difference was greater than 10 K the momenta were scaled using 

 
roll

ON T
TPP  ,        (36) 
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where PN and PO are the new and old momenta, respectively, and T is the desired 

temperature.  After the temperature was tested the rolling-average pressure was compared 

to the desired pressure.  If the absolute difference was greater than 5% of the desired 

pressure then the volume of the reaction cell was resized to give the desired pressure.  

The Cartesian positions of the bath gas atoms were scaled to adjust for the change in 

volume using 

 
3/1
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where qN and qO are the new and old Cartesian coordinates, respectively, and VN and VO  

are the new and old cell volumes.  The cell radius was smoothed with a 50 point rolling 

average using Eq. 37, as a function of the number of times it was adjusted. As stated 

above the cell volume was only adjusted if the absolute difference between the rolling 

average and desired pressure differed by 5%.   

Figure 14 shows examples of the instantaneous (magenta curves) and rolling average 

values (black curves) for cell radius (a), temperature (b), and pressure (c) as functions of 

time. The temperature and pressure targets are 800 K and 1,300 atm.  The instantaneous 

and rolling average values oscillate about the target values with the magnitude of the 

rolling average values being modestly smaller than the instantaneous values for both 

temperature and pressure.  The rolling average of the cell radius reaches a smooth 

average within 1 ps.  Frames (d-f) are an enhanced view on a shorter timescale of the 

results shown in (a-c).  These plots (d-f) show that the large initial fluctuations in the 

temperature, pressure, and the cell radius are quickly smoothed and stable trends for all 

three properties are reached well within the maximum integration time of 25 ps.  The cell 
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radius was fixed to the final value obtained at the end of the integration time.  Similar 

results for the smoothing of the cell fluctuations, as those shown in Fig. 14, were obtained 

for all of the temperatures and pressures simulated in this work.  The averaged volumes, 

radii, and bath densities are reported in Table IX.  

 

Figure 14 An illustration of the convergence of the cell properties during the pressure 
equilibration: (a) Cell radius; (b) Bath temperature; (c) Bath pressure. On a shorter 
timescale: (d) Cell radius (e) Bath temperature; (f) Bath pressure 

Table IX. The radii, volumes, and gas densities of the simulated pressures.a 

Pressure (atm) Radius (Å) Volume (Å3) Density (mol/L) 
35 45.62 (4)b 398000 (1200) 0.522 (2) 
70 36.26 (7) 120000 (1200) 1.039 (6) 
100 32.34 (6) 141800 (700) 1.46 (1) 
500 19.67 (9) 31900 (400) 6.51 (9) 
900 16.78 (7) 19800 (300) 10.5 (1) 
1300 15.36 (7) 15200 (200) 13.7 (2) 
a. These values are the averages and uncertainties calculated from the sixteen sub-

ensembles. 
b. The numbers in parenthesis indicate the uncertainty in the last non-zero digit. 

The volume of the cell decreased by a factor of three going from 35 to 1300 atm and the 

density increased two orders of magnitude.  At the higher pressures of 900 and 1300 atm 
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there appears to be some signs of incompressibility with only modest changes in cell 

radius and density.  

b. Solute Initial Conditions 

The initial conditions of the radical were selected using (EMS)34a,b with a total 

internal energy of 40 kcal/mol and no restriction on the angular momentum of the radical.  

The bath atoms were held fixed at the positions reached at the end of step (a) and only the 

reactant was changed during the Markov walk.  The intermolecular potential was ignored, 

so the surrounding bath gas had no effect on the selection of the internal state of the 

reactant.  Any possible interatomic overlaps between HO2 and Ar that could have 

occurred were dealt with in step (c).  A warm-up walk of 250,000 steps in Cartesian 

coordinates was started from the equilibrium geometry in which all three atoms of HO2 

were allowed to move with random displacements. The maximum possible displacement 

of a single atom was 0.2 Å.  The acceptance of a new displacement was governed by the 

weight in Eq. 7.  At the end of the walk a set of momenta were sampled and scaled to 

obtain the desired energy as described in Ch. II.  The final coordinates of HO2 at the end 

of the Markov walk were used as the starting configuration for selecting the initial 

conditions of the next trajectory in the simulation. Subsequent walk lengths consisted of 

100,000 steps that were taken between trajectories.  The length of subsequent walks was 

selected based on the convergence of the coordinates and potential energy as a function 

of the number of steps in the Markov walk.  The number of accepted moves of each walk 

was between 0.4 and 0.6.  
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Assigning the translational momenta is the next step in selecting the initial conditions 

of the solute.  A set of Maxwell velocity distributions were sampled for each of the atoms 

in HO2, then the center-of-mass velocity was calculated using  
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 where pi are the Cartesian momenta and mi is the mass of the ith atom.  The components 

of the sampled velocities that contribute to the internal motions of HO2 were discarded.  

Translational momentum was then vectorially added to the momenta sampled at the end 

of the EMS procedure using 

 cmii mvpp  .        (39) 

The result is a rotationally and vibrationally hot reactant that has a thermal distribution of 

translational energy.  The sampled kinetic energy of the center-of-mass motion was 

compared to the analytic Maxwell-Boltzmann distribution of kinetic energy given by  
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where Ek is the center-of-mass kinetic energy. An example histogram of the translation 

kinetic energy distribution is shown in Fig. 15.   
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Figure 15 The histogrammed center-of-mass kinetic energy of HO2 from the selection of 
the initial conditions at 800 K shown as red boxes.  The analytic distribution for T = 800 
K is shown as a solid black line for comparison. 

c. Final Thermalization 

The conformation of the radical was changed by the selection of microcanonical 

initial conditions described in Sec. B.2b, without consideration of the configuration of the 

surrounding bath gas.  Interatomic overlaps between the HO2 and Ar atoms are a possible 

consequence that could occur due to this neglect. To correct for this possibility, the bath 

gas atoms were re-thermalized with a new set of velocities using the procedure as 

described in Sec. B.2a.  The reactant was again held fixed, as described in Sec. B.2a but 

retaining the phase space point selected during Sec. B.2b.  A thermal trajectory was 

integrated for 25 ps with the temperature controlled in the same manner as it was in Sec. 

B.2a.  The final Cartesian coordinates of the bath-gas atoms were stored at the end of 
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each thermalization trajectory, and used as the starting configuration for subsequent 

thermalization trajectories in the simulation sequence.  

3. Energy Transfer 

Analysis of the energy transfer between the hydrogen peroxyl radical and the bath 

was done by decomposing the Hamiltonian of the radical into the translational, rotational, 

and vibrational components. The separation of linear momenta of the radical is exact. 

After removing the translational component a zeroth-order separation of rotational and 

vibrational energy was assumed 

 VRRV HHH  ,        (41) 

where HR  the was calculated using  

 LILH R 
 1

2
1 .        (42) 

L is the whole-body rotational angular momentum 

 prL  ,         (43) 

and the instantaneous moment of inertia was calculated using 
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This allows the vibrational energy to be defined as 
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 RRVV HHH  .        (45) 

Frederick et al.112 described several different ways of separating the vibrational and 

rotational degrees of freedom in molecular systems and recommended using Eq. 42, 

because the definition is independent of the coordinate system. 

The vibrational energy was calculated using Eqns. 42-45 as a function of time and the 

asymptotic thermal energy E(∞) was subtracted.  We refer to the vibrational energy 

above E(∞) simply as “excess-vibrational energy.” We assume that two factors will 

govern the behavior of E(∞) in the limit of infinite time: First, the solute will have the 

same average thermal energy as the bath. Second, in this limit the radical will have lost 

sufficient energy such that the trajectory is only sampling harmonic portions of the PES 

and that the contribution of the potential to equipartion135 will be .2
1 T   The definition of 

E(∞) is 3κT for vibrational motion and T2
3 for rotational motion. Since we are 

simulating a finite system, the energy loss from the radical will cause the bath to heat to a 

new asymptotic temperature; consequently, we assigned T to be the time-dependent 

ensemble average temperature of the bath gas.   

 The resultant curve, representing the decay of the excess-vibrational energy of the 

radical to E(∞), was fit to a bi-exponential function 

)exp()exp()( 21 tkBtkAtE  ,      (46) 

where A and B are calculated by linear least squares subject to the constraint A+B = 1, 

and k1 and k2 are time constants fitted using standard nonlinear methods.32 
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C. Results 

1. Thermal State of Bath  

The first test of the simulation method was to show that the equilibration of the bath 

resulted in a stable temperature and pressure and that the Maxwell-Boltzman distribution 

of speeds was adequately sampled by the bath gas.  These tests were done to ensure that 

there were no abnormalities in the implementation, since previously Marks et al.131 had 

shown that satisfactory results for these properties can be obtained using the sphere 

potential with a smaller number of bath atoms.  We tested two temperatures above and 

below 800 K for additional verification.  The initial conditions of HO2 were selected so 

that 10 kcal/mol was divided between the rotational and the vibrational degrees of 

freedom and the translational velocities were selected from a thermal distribution, as 

described in Sec. B.2.  The magnitude of the internal energy was of HO2 was arbitrarily 

selected to be smaller than the value (40 kcal/mol) that used in the actual relaxation 

studies.  This choice was made to minimize potential heating of the bath gas from energy 

transfer out of HO2.  It should also be pointed out that the results reported in this section 

are from individual trajectories. 

Figure 16 (a-c) contains of histograms of the Maxwell-Boltzmann speed distribution 

calculated from the bath gas speeds sampled during a trajectory, the analytic function is 

also plotted as dashed lines for comparison. These plots were generated from the results 

of individual trajectories of 125 Ar atoms and a single HO2.  
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Figure 16 Thermal state and pressure of the bath for a variety of sampled temperatures. 
(a) Maxwell-Boltzmann bath gas speed distribution: (a) 400 K; (b) 800 K; (c) 1600 K.  
Instantaneous pressures: (d) 35 atm; (e) 1300 atm; (f) 500 atm.  Instantaneous 
temperatures: (g) 400 K, (h) 800 K, (i) 1600 K. 

The velocity histograms are in excellent agreement with the analytic distributions.  

The temperature and pressure calculated using Eqns. 33 and 34 are shown in frames (g-i) 

and (d-f), respectively.  The fluctuations in the pressure are a function of both the 

temperature and the magnitude of the interatomic forces (see Eq. 34), so as the 

temperature and density of the system increase the magnitude of the pressure fluctuations 

also increases.  However, it is either the time average or ensemble average that has 

physical meaning.  The time average pressures going down the middle column of Fig. 16 

are: 34.8 atm, 1242.1 atm, and 506.6 atm and the root mean square (rms) fluctuations are: 

1.8, 130.4, and 26.3 atm, respectively.  The time average temperatures in the right hand 
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column of Fig. 16 are: 396.8 K, 777.1 K, and 1615.8 K and the rms fluctuations are 6.0 

K, 20.0 K, and 23.4 K, respectively.  The increased fluctuations, in the temperatures and 

pressures, at higher densities could be indicative of increased incompressibility of the 

bath gas.  This incompressibility can be identified as an increased number of multiple, 

non-negligible interatomic interactions.  Some evidence of this incompressibility can be 

seen in the rms fluctutations of the HO2-Ar interactions calculated by Eq. 25:  The rms 

fluctuations in the HO2-Ar interactions are the following: for 400 K and 35 atm, it is 0.16 

kcal/mol; for 800 K and 1300 atm, it is 0.90 kcal/mol; and for 1600 K and 500 atm, the 

rms is 0.79 kcal/mol.  The multiple, non-negligible interactions cause more fluctuation in 

the kinetic energy of the system, which is used to define a temperature in Eq. 33.  The 

virial term, ∑∑rij∙F(rij,,), used in calculating the system pressure in Eq. 34, also fluctuates 

more, which combined with the modulation in temperature could be the cause the 

observed fluctuation in pressure.  

There is a slight upward drift in the temperature of the bath for the 800 K (frame h) 

and 1600 K (frame i).  The drift is due to the bath gas atoms gaining energy from HO2 via 

collisions during the course of the trajectory.  The expected thermal energy of rotational 

and vibrational energy of HO2 is 4.5κT.  For the 800 K trajectory the temperature of 

drops as low as ≈720 K and the relative internal energy, 10 kcal/mol, of HO2 at this 

temperature is ≈6.9κT, so it is probable that energy will transfer to the bath gas atoms and 

cause the overall temperature of the simulation to rise. Similar analysis 1600 K trajectory 

shows the same behavior, the instantaneous temperature drops as low as ≈1510 K and the 

relative internal energy of HO2 is ≈4.6κT, so again energy transfer out of HO2 can occur.  

The 400 K trajectory shows no overall temperature drift because the activating and 
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deactivating collisions of HO2 with the bath gas atoms effectively canceled each other out 

over the course of the trajectory.   

A way to decrease the magnitude of the fluctuations is to increase the number of bath 

gas atoms.  If one assumes that the reduction in error follows the relation of N/1 , 

where N is the system size, reducing the fluctuations in Fig 16 by half would require a 

system size of 500 Ar and reducing the error to a quarter of its value would require 2000 

Ar.  These results taken as a whole show that the procedure described in Sec. B.2b was 

sufficient in setting the thermodynamic state of the bath.  

2. Energy Transfer Results 

The goal of this study is to detemine whether there is any pressure effect on the 

relaxation of excited HO2.  The integration time lengths were determined from 

extrapolation of preliminary results.  The 35 and 70 atm trajectory ensembles were 

simulated for 1700 ps, the 100 atm ensemble was simulated for 750 ps, and the 500, 900, 

and 1300 atm ensembles were simulated for 500 ps.  The effect of the system size was 

studied by varying numbers of bath gas atoms in the simulation vessel.  The number of 

bath gas atoms was varied from 125 up to 1000 Ar atoms and these simulations were 

done at 1300 atm and 800 K.  

a. Vibrational Relaxation Pressure Dependence 

Figure 17 contains plots of the vibrational energy of HO2, the bath temperature, and 

the bath pressure as functions of time.  All of these quantities were scaled to a range of 0 

to 1 relative to their respective values at time = 0.  The initial conditions of HO2 were 
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selected so that the translational motion was thermal and 40 kcal/mol was distributed 

between the rotational and vibrational degrees of freedom.  Both the bath temperature and 

pressure, for all of the trajectory ensembles, show a relative increase with respective to 

the values at time = 0.  The final relative increase in both temperature and pressure, for 

all of the ensembles, is ≈10%.  The increase in both temperature and pressure is due to 

the Ar atoms gaining energy as the HO2 is deactivated by collisions.   
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Figure 17 . The results of HO2 with 40 kcal/mol of excess internal energy relaxing in a 
bath of 125 Ar atoms at various pressures. The scaled: (a) vibrational energy, (b) 
temperature, and (c) pressure. The line coloration: 35 atm, red; 70 atm, magenta; 100 
atm, green; 500 atm, blue; 900 atm, yellow; 1300 atm, dark-green. 
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Figure 18 contains plots of the energy decay curves and single exponential fits on a 

semi-log scale. The amplitude of the single exponential fits was constrained to unity.  It is 

apparent that the vibrational relaxation is not well fit by a single exponential and two 

relaxation timescales are present.  Close examination of the curves show indicate that 

there are two appearant linear regions. An example of the transition from the first 

relaxation timescale to the second can be seen with the red curve at ≈ 425 ps. This 

nonlinearity in the energy relaxation curves exists in all of the simulated results. 

  

Figure 18. Plots of the decay of excess-vibrational energy above the thermal limit (See, 
Fig. 17a) as a function of time on a semi-log scale: single exponential fits (dashed-black); 
35 atm, red; 70 atm, purple; 100 atm, light-green; 500 atm, blue; 900 atm, yellow; and 
1300 atm dark-green. 
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The results of fitting to Eq. 46 are shown in Fig. 19 and it appears that the bi-

exponential fit is satisfactory.  HO2 loses at least 70% of the initial vibrational energy for 

all of the pressures simulated and for the highest pressure the vibrational energy falls by 

≈95% within the simulated time.  

 

Figure 19. Same as figure 18, except scale is not semi-log and fitted curves are from Eq. 
46. 

The fitting parameters and uncertainties calculated in fitting the curves in Fig. 17a to 

Eq. 46 are tablulated in Table X.  The asymptotic limit of zero required for fitting the 

curves in Fig. 17a was done by subtracting off the thermal energy of the radical, which is 

a function of the bath temperature shown in frame 17(b), with an appropriate conversion 

by equipartion, described in methods Sec. B.3.  As discussed in the methods (Sec. B.3), 
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the fitting of the energy decay curves was done with A and B determined by linear least-

squares with the constraint of A + B = 1 and k1 and k2 treated as adjustable parameters.  

The error bars in Table X were generated by bootstrapping48 the 1600 trajectories of each 

ensemble. In total, 5000 resampled groups of 400 trajectories were generated for each 

pressure ensemble.  The excess-vibrational energy curves, calculated from the resampled 

data sets, were also fit to Eq. 46.  The bootstrapping was done so that each trajectory 

could only be sampled once per resampled group.  

Table X. Parameters and error bars from fitting the vibrational relaxation of HO2 to Eq. 
46 

P (atm) ρ (mol/L) A B σAB k1
a σk1 k2 σk2 

35 0.52 0.34 0.66 0.07 0.0038 0.0008 0.0007 0.0001 
70 1.04 0.34 0.66 0.07 0.0048 0.0011 0.0010 0.0001 
100 1.46 0.23 0.77 0.07 0.0081 0.0017 0.0013 0.0001 
500 6.51 0.21 0.79 0.06 0.0167 0.0049 0.0032 0.0002 
900 10.47 0.26 0.74 0.06 0.0221 0.0051 0.0045 0.0003 
1300 13.66 0.26 0.74 0.05 0.0301 0.0075 0.0058 0.0003 
a. The unit of k1, k2 and the respective errors is ps-1. The amplitudes A and B are 

dimensionless. 

Figure 20a contains plots of the amplitudes and time constants found in Table X as a 

function of the bath gas density. The change of the independent variable to density was 

made to faciliate comparison with the results of Paul et al.19c  Both time constants grow 

with increasing bath density, but there is a change in behavior near ≈1-2 mol/L as shown 

by the blue curves.  Also at this density the amplitudes of the exponentials shown as the 

red curves oscillate and  the amplitude of the primary exponential increases, while the 

amplitude of the smaller exponential decreases.  However, the error bars of the amplitude 

show a fair amount of overlap across the density range indicating that the amplitudes 
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have a weak density dependence. The amplitude of the slower exponential is consistently 

larger than that of the faster exponential.  

The vibrational relaxation results of Paul et al.19c are included in frame (b) of Fig. 20 

for comparison with our results in frame (a).  Plots of this sort were not reported by Paul 

et al., so we have plotted their data in Table III of Ref 19c as a function of the reported 

bath densities.  The reported results are from simulations of vibrationally excited C6F6 

embedded in an N2 fluid described with periodic boundary conditions.  Paul et al. fit the 

relaxation of excess-vibrational energy was fit to the bi-exponential function where E(∞) 

was treated as an adjustable fitting parameter.  These simulations also span a density 

range four times the maximum density we investigated.  The magnitude of the relaxation 

time constants for C6F6 are larger than those reported by us for HO2 by about a factor of 

three to five.  We believe this difference could be due to C6F6 having only low frequency 

modes that will readily couple to the motion of the bath gas.  Despite the difference in the 

magnitudes of the time constants there are striking similarities in the relaxation results of 

HO2 and C6F6.  The amplitudes shown in Fig 20b exhibit a density dependence, but in the 

same range of densities we simulated, the amplitudes reported appear to exhibit only a 

weak-density dependence.  It is interesting that the relaxation results for very different 

chemical species are well fit by a bi-exponential function.  While there are differences in 

the magnitudes of the relaxation timescales, both the C6F6 and HO2 results show two 

different regions of linear dependence with respect to bath density  The turnover from 

one linear region to the other in our results occurs at ≈1 mol/L and at ≈10 mol/L for the 

results of Paul et al.  It is possible that the size of the molecule plays a role in determining 

the density at which this turnover behavior occurs.  The turnover effect is somewhat 
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appearant with the dashed green line in frame (b), but it is less clear when examining the 

solid green curve.  It is worth noting that a turnover can be seen in the experimental 

relaxation time constants obtained by Schwarzer et al.19b and Benzler et al.,123 and in both 

of these studies the turnover occurred at a density of ≈10 mol/L.  Additional simulation 

results for C6F6 at a lower density range are needed to better characterize the density at 

which the turnover behavior occurs. 
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Figure 20. Plots of the fitting amplitudes and time constants in Table X as a function of 
bath gas density. The lines are intended to guide the eye: (a) the solid-blue line 
corresponds to the larger time constant and the amplitude is matched with the solid-red 
line. The dashed-blue line corresponds to the smaller time constant and the amplitude is 
matched with the dashed-red line; (b) the results from Paul et al.19c: (a) the solid-green 
line corresponds to the larger time constant and the amplitude is matched with the 
solid-yellow line. The dashed-green line corresponds to the smaller time constant and the 
amplitude is matched with the dashed-yellow line. The symbols in (b) were included to 
emphasize the densities specific densities of the simulations.  
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Our low-pressure time constants are shown on a much larger scale in Fig. 21. Linear 

fits are shown as the black lines in this figure.  These fits to the three data points were 

obtained with the intercept fixed at zero.  The zero intercept is the limit of no collisions 

and consequently no energy transfer.  The fitted lines lie outside of the bootstrapped error 

bars reported at the lowest density.  An overlap of linear fits with the data would have 

been supporting evidence of a linear proportionality between the time constants and the 

bath gas density, which is an important assumption in IBC.  We think that the increase in 

both temperature and pressure of the simulation drives the relaxation of HO2 and leads to 

an overestimation of the time constants. This possible finite-size effect motivated a study 

of how the system size affected the relaxation process.  
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Figure 21 The low-pressure time constants k1 and k2 as a function of pressure on a 
smaller scale than that shown in Fig. 19. The larger time constants are plotted relative to 
the axis on the left and the smaller time constants are plotted relative to the axis on the 
right.  The solid and dashed-black lines correspond to a linear fit of the time constants 
subject to the constraint of zero energy transfer in the limit of zero pressure. 

b. Finite Size Effects   

The simplest prescription to avoid the finite size problem is to increase the system 

size until the results of interest no longer change.  However, increasing the bath comes 

with a tradeoff of time, because the computational cost of the simulation scales with the 

system size.  For our particular study, we assume that the excited HO2, started with 40 

kcal/mol of internal energy, is relaxing to thermal equilibrium. In the long-time limit, the 

internal energy of the radical predicted by equipartition would be 4.5κT or 7.2 kcal/mol at 

800 K.  This means that ≈33 kcal/mol of excess energy would be transferred to the bath 
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in the limit of complete thermalization.  The predicted increase in the bath temperature 

for a monoatomic gas is ≈2Nκ/3Ek, so doubling the number of bath atoms would reduce 

the rise in temperature by half.  To study the effect of the number of Ar atoms on the 

relaxation, we did additional simulations of HO2 relaxing with increasing numbers of 

bath gas atoms with initial conditions selected described in Sec. B.2b. at 800 K and 1300 

atm.  We chose to simulate several system sizes to see how the temperature increase 

progressed: for 125 atoms the increase would be ≈90 K; for 250 atoms, ≈45K, for 500 

atoms, ≈22 K, for 750 atoms, ≈15 K, and for 1000 bath atoms, ≈11 K.  We attempted to 

partially account for heating of the bath on the relaxation process by making the 

asymptotic energy of HO2 a function of the bath temperature.  However, this does not 

account for the associated rise in pressure that occurs with heating (see, Fig. 17c). 

The results from the simulations with increasing numbers of Ar atoms are shown in 

Fig. 22.  The approximate temperature increase shown in frame (a) agrees fairly well with 

the predicted increase for each of the numbers of bath gas atoms.  The increase in the 

simulation temperature from smallest to largest number of bath gas atoms is:  36, 18, 12 

and 9 K.  The increases in pressure shown in (b) are a possible indication as to why the 

smaller simulations have larger relaxation time constants.  The pressure calculated by Eq. 

34 has explicit temperature dependence in the ideal gas term T. The increase in 

temperature would cause a corresponding increase in pressure, or the collision frequency 

between the radical and the bath, which would likely manifest as a faster decay of the 

excess-vibrational energy with smaller system size.  The results in frames (c) and (d) 

seem to support this fact with the results from the smaller bath simulations relaxing to a 

much lower final excess-vibrational energy. The HO2 embedded in 125 Ar atoms is ≈4% 
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above the equilibrated limit, see Fig. 19, while the HO2 embedded in the 1000 Ar is 

≈10% above this limit.  We also fit the curves in Fig. 22d to Eq. 46 and the fitting results 

are tabulated in Table XI. 

 

Figure 22.  Relaxation results as a function of increasing numbers of Ar bath atoms. (a) 
Scaled bath gas temperature; 250 Ar, purple curve; 500 Ar, green curve; 750 Ar, blue 
curve; 1000 Ar, yellow curve. (b) Same as (a), except scaled bath pressure. (c) 
Vibrational energy decay on semi-log scale with the same coloration as in (a), dashed, 
black lines correspond to fits to a single exponential function. (d) Vibrational decay with 
corresponding fits to Eq. 46. 
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Table XI. Parameters and error bars as a function of number of Ar atoms.  

# of Ar A B σAB k1 σ k1 k2 σ k2 
125 0.26 0.74 0.05 0.0301 0.0075 0.0058 0.0003 
250 0.26 0.74 0.05 0.0253 0.0053 0.0049 0.0003 
500 0.25 0.75 0.05 0.0229 0.0051 0.0042 0.0002 
750 0.28 0.72 0.05 0.0201 0.0040 0.0039 0.0002 
1000 0.31 0.69 0.05 0.0203 0.0035 0.0036 0.0002 

 

The amplitudes of the exponentials, red curves in Fig. 23a, appear to be only weakly 

affected by the number of bath atoms within the calculated error bars. The magnitudes of 

the time constants, blue curves, show a decrease with increasing number of bath gas 

atoms.  These results indicate that the mechanism of the relaxation process is only very 

weakly dependent on the system size, but the speed of the process is accelerated by the 

heating of the bath gas, even after the estimated equipartition energy of HO2 is subtracted 

off.  The magnitudes of both time constants are plotted in Fig. 23b on an expanded scale.  

The larger time constant increases by about 30% going from the largest number of bath 

atoms to the smallest; however, it should be noted that the calculated error bars indicate 

there is a great deal of overlap among the larger time constants.  The smaller time 

constant increases by ≈40% going from the largest to the smallest number of bath gas 

atoms.  There is not as much overlap of the error bars of the smaller time constants, 

except with the larger simulation size results.  This indicates that the slower process is 

more sensitive to the issue of the finite size of the simulation. 
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Figure 23.  The variation of the time constants and amplitudes obtained in fitting Eq. 46 
as a function of the number of bath gas atoms at 800 K and 1300 atm. The lines are 
intended to guide the eye.  The results from the 125 Ar atoms at 1300 atm have also been 
included in the plotted data. (a) The solid-blue line correspond to the magnitude larger 
exponential and the solid-red line corresponds to the associated amplitudes. The 
dashed-blue line corresponds to the magnitude of smaller exponential and the dashed-red 
lines correspond to the associated amplitudes. (b) Plots of the magnitude of the time 
constants on an expanded scale;  larger time constants are in blue and are relative to the 
left y-axis and the smaller time constants are in yellow and are relative to the right axis 
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D. Conclusions 

The relaxation of HO2 embedded in a dense Ar bath was presented in this chapter.   

Our work was motivated by the nonlinear, density dependent effects on relaxation 

reported in the experimental studies of Schwarzer et al.19b on azulene, and Benzler et 

al.123 on cycloheptatriene, and in the simulations done by Paul et al.19c on 

hexaflurobenzene.  Given the relative importance of HO2 in combustion, we were 

interested in seeing whether the relaxation of vibrationally excited HO2 has a density 

(pressure) dependence.  We chose to simulate the relaxation process of excited HO2 

embedded in 125 Ar atoms at 800K and 35, 70, 100, 500, 900 and 1300 atm. We have 

established and validated a general scheme for these simulations that is similar to the 

methods proposed by others.19c,125,128,129   

We found that the decay of excess vibrational energy was well represented by a bi-

exponential function. This finding is surprisingly similar to the results of Paul et al.,19c 

who reported simulations of a much larger solute in a diatomic bath gas.  We also 

observed that both our time constants and the time constants reported by of Paul et al. 

have a non-linear densities dependence similar to the behavior reported by Schwarzer et 

al. and Benzler et al.  We also reanalyzed the results of Paul et al. and found similarities 

with our results and evidence of turnover behavior. We found that our lower pressure 

results do not extrapolate to zero in the limit of an infinitely dilute gas. 

We also investigated the effect of finite sizes on the relaxation process. The primary 

size effect is heating of the bath due to energy lost by the solute.  We found as expected, 

that the bath heats up to temperatures predicted by energy equipartition.  This heating 

does not appear to change the relaxation mechanism, but rather it only appears to 
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accelerate it.  The effect of heating is not completely accounted for by making the 

asymptotic thermal energy of HO2 a function of the temperature of the bath gas.  The 

finding that the low-pressure time constants do not extrapolate to zero in the limit of low 

density could be due to this finite size effect, and the lower pressure time constants would 

likely decrease with increasing system size.  The number of Ar atoms will have to be 

increased by a factor of eight to recover the low-pressure limit. 

While we have found evidence of bi-exponential relaxation timescales and pressure 

effects on the relaxation time constants we do not have a clear mechanism for what is 

occurring.  It is probable that there is an interplay of multiple factors, which ultimately 

gives rise to the results we report in this paper.  A probable mechanism that could have 

two relaxation timescales is the following.  We hypothesize that the first timescale is 

related to the relaxation of rotational energy.  Large extensions of the O-O bond will 

cause large modulation of the rotational energy.  The oscillation of the O-O bond is 

intimately tied to the loss or gain of rotational energy.  A shorter O-O bond length means 

smaller moments of inertia, so rotational energy will be more easily changed by collisions 

with the bath.  Longer extensions of the O-O bond would mean larger moments of inertia 

that would make the radical are more resistant to changes in the rotational kinetic 

energy..  It is probable that loss of rotational energy is mitigated with a slow leakage of 

energy from the O-O vibrational degree of freedom.  A cascade of energy into the bath 

via the rotational degrees of freedom would continue until these degrees of freedom are 

thermalized and the magnitude of vibrational energy is not sufficient to sustain longer 

extension of the O-O bond.  A potential test would be to measure the range of oscillation 

of O-O as the radical is progressively loses energy by collisions.  The relaxation process 
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would then transition to the slower mechanism which would likely consist of a slow 

direct energy transfer out of the lowest frequency vibrational degrees of freedom. 

The turnover of the relaxation time constants with increasing density implies a change 

in how the bath gas atoms are interacting with the solute.  We suspect a change in the 

local environment of the solute could be the cause of this turnover in the relaxation time 

constants.   In the next section, we discuss some future directions of research that could 

helpful in understanding the bi-exponential timescales of relaxation and how the bath gas 

density could cause the turnover of the relaxation time constants. 

E. Directions of Future Research  

This initial work was motivated by evidence of a breakdown in the IBC assumption 

of linear scaling of relaxation time constants with increased pressure.  While our 

simulation results show a breakdown in the expected linear scaling effects of pressure the 

mechanism of this breakdown has not been resolved and there are several avenues for 

future investigation.  It has been suggested19b,123 that a clustering effect of bath gas around 

the solute might inhibit collisional energy transfer and could be the source of the turnover 

effect.  Collision events can have a varying finite lifetime, so it seems probable that 

collision events could overlap at higher densities.136  Ohmine122 proposed a potential 

energy criterion for determining the beginning and ending of collision events, and a 

relative scale for classifying the collisions that were most effective in relaxing an excited 

solute.  Collisions were determined to occur when the sum of the intermolecular 

interactions of the bath with the solute became greater than some threshold.  This scheme 

only identifies collisions from the cumulative interatomic potential energy without 

distinguishing the number bath gas atoms that could be participating in a collision event.  
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A more precise definition would look at changes in the magnitude of individual 

interactions.  The beginning and end of a collision could then be determined, which 

would allow assignment of the duration of a collision.  The distributions of the lifetimes 

of the solute-bath collision complexes and the average number of local collision partners 

could clarify how many-body effects or clustering influence density-dependent 

relaxation.   

The decay of excess-vibrational energy was well represented by a bi-exponential 

function across all of the simulated pressures.  As previously discussed in Sec. C.2a, a 

similar finding was reported by Paul et al.19c for a hexaflurobenzene.  The bi-exponential 

fitting is evidence of two relaxation processes.  It is possible that IVR is the cause of this 

binary timescale behavior. We hypothesize that the low frequency mode (O-O) is more 

likely to lose energy by collisions137 than high frequency modes (O-H stretch and H-O-O 

bending motion).  The energy flow out of the O-O mode could be mediated by V-R 

coupling, with the thermalization of the rotational degrees of freedom occurring relatively 

quickly. The high frequency modes would likely remain relatively isolated from the 

effects of collisions with the bath gas.  A slow transfer of energy out of the high 

frequency modes could repopulate the O-O mode causing the collisional energy loss to 

repeat until the chemical species is thermalized.  Once sufficient vibrational energy is 

lost, the repopulation of energy into the O-O mode would slow; consequently, the energy 

transfer to the bath gas would reflect this change in mechanism.  Our IVR simulations of 

the isolated radical show the possibility of slow, picosecond timescales for internal 

energy transfer, which would fit in this mechanistic scheme.  We are not aware of any 

internal energy transfer results for hexafluorobenzene.  However, von Benten et al.138 
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reported picosecond IVR timescales in the experimental relaxation studies of mono-

substituted benzenes, so it does not seem unreasonable to propose a slow IVR process as 

the source of the bi-exponential relaxation reported by Paul et al. 
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V. Conclusions 

Some studies of the dynamics of the hydrogen peroxyl radical have been reported in 

the previous chapters.  Beginning with the dynamics of the isolated radical we have 

compared three PESs for HO2 in terms of phase space structures using 

surfaces-of-section, and for IVR, isomerization, and dissociation trajectory dynamics.  

The IVR shows multiple timescales with the relaxation of excited OO stretch being 

especially slow for both the IMLS and XXZLG PESs.  There is evidence that 

isomerization helps facilitate IVR from the low frequency O-O mode to the higher 

frequency modes involving the motion of the hydrogen atom.  Slow IVR in turn leads to 

prominent mode-specific effects in isomerization (on both PESs) and dissociation (only 

accessible on XXZLG).  The isomerization and dissociation populations are best 

described as bi-exponential with the two timescales being attributed to slow IVR.   The 

DMBE IV results contrast with the results obtained with the other surfaces:  IVR occurs 

on much shorter timescales, mode specific effects are minor or nonexistent, and any 

effect of isomerization on IVR is also minor.  The unimolecular reactions involving this 

surface are well described by a single timescale.  

Future directions of study on isolated HO2 could be devoted to further quantification 

of the non-statistical reaction dynamics by comparison of results from additional 

trajectory studies and variational transition state theory.  Investigation of the interaction 

between rotation and vibration would also be useful in further understanding the 

timescales of energy transfer in this radical.  Comparative studies of the dynamics of the 

HO2 radical and the hydrogen peroxyl anion could offer additional insights into the 

factors and timescales of the dynamics. 
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The second study focused on the relaxation of HO2 in a dense gas environment.  The 

relaxation of the radical by collisions with an Ar bath was found to be bi-exponential.  

The relaxation time constants were found to have a nonlinear density dependence.  Finite 

size effects, primarily in the form of heating, do not appear to change the mechanism, but 

rather speed up the rate of thermalization. Such finite effects are a likely source for the 

imperfect match of the time constants to the limit of zero density.  The issue of finite size 

would likely have the same effects on the convergence of the lower pressure relaxation 

time constants. 

Future research directions are proposed with emphasis on understanding if the 

suggested clustering effect or many body collisions with the bath could be the source of 

the nonlinear density dependence of the relaxation results.  Ohmine122 proposed a method 

for identifying and quantifying collisions, which we have modified for analyzing 

individual collision events.  We suggest that IVR and clustering of the bath around the 

solute as possible sources for the bi-exponential decay of the excess-vibrational energy. 
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APPENDICES 

Appendix I 

The contents of this appendix is a listing of the modifications and additions that were 

made to the classical dynamics code GenDyn in the course of this research.  The core 

program and user manual were obtained from: 

http://www.chem.missouri.edu/Thompson/research/gendyn.htm  

The subroutines are loosely grouped according to the role of the subroutine in the 

program: reading runtime conditions, selecting initial conditions, integration, potential 

energy surface, analysis.  The user manual of the original code is sufficiently detailed for 

a straightforward compilation and execution of the code.  The modularity of the 

programming style allows for easy inclusion of new routines and algorithms.  The 

majority of the following routines were programmed during the course of this 

dissertation, unless indicated with italics. The subroutines in italics are generally 

composed of code that was primarily written by others.  These subroutines were 

interfaced and modified for use within GenDyn and original authorship is acknowledged 

in line with the code.  Some of the modified routines are core routines from the original 

GenDyn code where multiple authors likely contributed; these codes are not in italics.  

Much of the usage of the code is described in Ch. III and IV and liberal comments in line 

with the code are present throughout the subroutines. 

Some of the code functionality of the routines related to the dense gas simulations 

were not used, but could be of future interest. The additional functionalities that were not 

used were: periodic boundary conditions; interatomic force fields for Lennard-Jones 

148



 

133 

interactions in addition to Buckingham potential; and interactions of a solute embedded 

in either diatomic, or triatomic bath gases.   

Read in: cellinput.f, cellinput.pbc.f, eqcartmod.f, inputmod.f, varymod.f,  

 Initial conditions: canongas.f, cellboltz.f, cellboltz.pbc.f, celladj.f, cellsz.f, cellsz.pbc.f, 

diag.f, hessgen.f, inmnrg.f, randno.f, stmom.f, roto.excit.f, paxis3.f90 

Integration: diffverlet.f, diffvprod.f, diffadm.f, pbc.f 

PES: dmbeiv.f, dynamic_parameters.f90, genpotgas.f, genpotgas.pbc.f, genpotmod.f, , 

ho2gxpot.f, ho2mb2001.f, ho2pesfast.f, intern.pbc.f, utility.f, eqnmotmod.f, 

PES_3D_subroutine.f90,  

Analysis: analysis.f, backinteg.f, eckart.f, hamsys.f, press.f, rotation.f, rdf.f, writeout.f  
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Appendix II 

Supplemental Material for “A Classical Trajectory Study of the Intramolecular Dynamics 

and Unimolecular Dissociation of HO2” by J. Perry, R. Dawes, A. F. Wagner, and D. L. 

Thompson, J. Chem. Phys. 139, 084319 (2013). 

This supplemental material concerns (1) details of the XXZLG potential, (2) kinetic 

model for energy transfer, and (3) the determination of latency time. 

A. XXZLG details 

In the XXZLG routine any input geometry is converted to ROO, ROH, and OOH and 

then splines are fit to the ab initio energies in these coordinates. Our initial trajectories 

and subsequent analysis of the XXZLG PES revealed two minor issues that can be 

loosely characterized as inflexible coordinates and a deficient database.  

The coordinate inflexibility is a consequence of how XXZLG forces exchange 

symmetry with a valence bond coordinate system defined above that does not display that 

symmetry.  The shortest O–H bond is always selected for spline interpolation.53  This 

choice has the desired effect that any path through the O–O perpendicular bisector plane 

will be continuous and exhibit the required exchange symmetry; however, exchange 

symmetry also requires that any perpendicular path through the bisector plane have zero 

slope at the intersection of the plane. The XXZLG routine does not enforce this 

requirement, resulting in a discontinuous slope at the perpendicular bisector plane.  The 

patch discussed in Ch. III remedies this problem. 

The XXZLG database for the spline fitting is deficient in two ways.  First, it would 

appear that at least for collinear geometries, many of the electronic structure calculations 
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are not fully converged to the ground state.  Within the database there are 173 pairs of 

collinear geometries that correspond to the same Cartesian geometry; e.g., 

(ROH,OOH,ROO) = (1.0a0,180°,2.2a0) or (3.2a0,0°,2.2a0).  The two energies for each pair 

should be identical but the root-mean-square (rms) difference between the two energies 

over the 173 pairs is ≈3.3 kcal/mol.  For energies below 70 kcal/mol, which encompasses 

both the H + O2 and O + OH asymptotes, there are 22 pairs with a 1.4 kcal/mol rms 

difference and a maximum difference of 4.2 kcal/mol.   

A second deficiency in the database is its sparsity of configurations.  There are two 

measures of this.  The first can be illustrated for the isomerization saddle point.  The 

closest database geometry to that saddle point is (ROH,OOH,ROO) = (2.2a0,50°,2.7a0).  

In evaluating the energy for (2.2a0,OOH,2.7a0), XXZLG will evaluate the spline shown 

in Fig. 1 where the dots are the available database entries for OOH given (ROH,ROO) = 

(2.2a0,2.7a0).  
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Fig. 1 Spline of the XXZLG potential energy with respect to OOH for database entries 

where (ROH,ROO) is fixed at (2.2a0,2.7a0). The inset is the region of the saddle point. 

 Those entries are for 10° angular increments and feature ≈300 kcal/mol energy 

changes over a single increment which leads to ≈1 kcal/mol ripples in the spline near 40° 

and 50° as seen in the insert of Fig. 1.  Using the electronic structure methods that were 

used to compute the XXZLG data, we calculated an energy 1.3 kcal/mol higher than the 

XXZLG energy at the XXZLG isomerization saddle point geometry, consistent with the 

ripple features in Fig. 1.  A second measure of database sparsity arises from the fact that 

≈25% of the geometries in the database have ROH values that are the larger of the two 
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ROH values for the given (ROO,OOH).  Because XXZLG only uses the ab initio 

database at the smaller of the two possible ROH values, XXZLG will not exactly recover 

the database energy for these geometries.  About 25% of the database is not fully used or 

put another way, 25% of the database can be used to quantify the XXZLG “fitting error.” 

For energies less than 70 kcal/mol, the rms fitting error is 0.17 kcal/mol for ≈1,300 

geometries.  The convergence errors for collinear geometries discussed above contribute 

to this rms error, but when these points are removed the rms error is 0.13 kcal/mol with a 

maximum error of 1.0 kcal/mol.   

Of course any PES based on an ab initio method will have errors inherent in the 

specific electronic structure theory.  However, the XXZLG PES has fitting errors that are 

measured in a few tenths of a kcal/mol globally and a few kcal/mol for selected regions 

for energies under 70 kcal/mol.  These fitting errors can only be improved by more 

complete convergence of the electronic structure theory calculations, especially in the 

collinear region.  Further improvements would require either a denser database or a 

different fitting method, such as interpolative moving least squares,26c that can be 

supported by a database of non-uniform point distribution constructed to minimize the 

fitting error. 
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B. Kinetics Model 

As a means for interpreting the energy transfer in isolated HO2 Albert F. Wagner 

proposed and we jointly developed an analytical kinetics model of energy transfer in a 

three mode system that is based on two principles: (1) the change in the energy of a mode 

is directly proportional to the amount of energy the mode currently has and (2) the energy 

of each mode asymptotically relaxes to the same value, i.e., the total energy divided by 

the number of modes.  These two principles produce the following kinetics model: 
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where Ei is the energy in mode i and kij is the IVR rate constant for the transfer of energy 

from mode i to mode j.  The second principle, (2) above, of asymptotic equipartition of 

energy requires kij = kji. Equation (1) does not make explicit the conservation of total 

energy.  By a change of variables from (E1, E2, E3) to (E1+E2+E3 = , E1 - E2 = ∆, E2 - 

E3= ),  becomes the fixed total energy while ∆ and  asymptotically go to zero to 

satisfy the equipartition requirement. Applying the change of variables to Eq. (1) results 

in: 
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The analytic solution for   is  = Etotal and the solutions for  and   are 
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where k1(2) = k12+k13+k23 ± , c = (4 - 2 k12 - k13 - k23)/(k13-k23),    (k12
2+k13

2+k23
2 – 

k12k13 – k12k23 – k13k23
 and A and B are as yet undetermined constants. Equation (3) 

has three nonlinear parameters that together give the three kij.  From the above, Eqs. (S.3) 

can be rearranged to provide explicit expressions for Ei(t) : 
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Here Easymp is the asymptotic final energy equal to one third of the total energy.   

This model can display two different kinds of structural deficiencies.  First, as results 

in CH. III C.1 show, optimized values of k1, k2, and c can be reasonable while an 

underlying kij might have a negative value. Under such circumstances, the kinetics model 

may be phenomenologically useful but its kij’s are not capable of general physical 

interpretation.  In these cases, the reported k1, k2, and c values are for a constrained 

optimization where any optimized negative kij is constrained to be zero.  One way this 

behavior can happen is when the model is fit to IVR decay over too short a period of time 

relative to the decay constant such that the decay is very nearly linear in time.  Since the 

energies in all three modes depend only on ∆(t) and (t), under such circumstances the 

data can only strongly support four constants, namely two intercepts and two slopes s∆ 
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and s. However, the model has five adjustable parameters: k1, k2, c, A, and B [see Eq. 

(S.4)].  If A and B represent the intercept information, the k1, k2, and c, or more 

specifically, three kij’s must be correlated to obtain the two optimum slopes.  This can 

lead to a kij being negative because large excursions including into negative values of any 

one kij result in negligible change in fitting error if the two other kij’s change in a 

correlated fashion.  The two slopes s∆ and s contain all the rate information and in 

CH. III C.1 some of the discussion will involve their value.   

A second deficiency arises from the nature of Eq. (S.1) where each Ei is controlled by 

one of the three pairs of rate constants that can be formed from the three kij’s.  In the 

extreme case where two rates constants are zero, then one of the Ei’s and E itself are time 

independent, allowing the kinetics model to display two different asymptotes.  CH. III 

C.1 does have such a case. 

The parameters A and B can be made to give exactly the initial conditions or they can, 

along with the nonlinear parameters, be least-squares adjusted to the trajectory results for 

∆ and . As explained in CH. III C.1, A and B are best determined by a linear least-

squares process, while the kij parameters are determined by standard nonlinear least 

squares fitting methods.32  Altogether, this makes five adjustable parameters to represent 

a particular IVR simulation.  These nonlinear methods were complemented by a 

discretized search for apparent local minima on various 3D grids in kij parameter space. 

This discretization approach revealed topological features of the rms error surface with 

respect to the kij parameters that were useful in determining the global minimum.   
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C. Latency time 

For some mode-specific excitations, for an initial period of time there is either no 

decay rate or an accelerating decay rate. When decay curves display such features, 

population data over an initial period of time were excluded from the fit of Eq. (20). This 

exclusion or, in effect, latency time t0 was determined by contrasting the rms fitting error 

to the rms sampling error.139 The rms sampling error comes from the fact that only a 

finite number of trajectories are used to construct the population, implying that the 

population at each time has a sampling uncertainty whose square summed over every 

time increment leads to the rms sampling error. Both the fitting error and the sampling 

error change as more data is excluded from their calculation by an increasing latency 

time. However, the fitting error is initially larger than the sampling error and rapidly 

decreases as latency time increases, all because of the unsuitability of Eq. (20) for fitting 

early time features. At the same time, the sampling error changes little with latency time 

because excluded sampling errors are small when the normalized population is near 

unity, which it is at early times. We define the latency time as the earliest time at which 

the fitting and sampling rms errors are equal.   
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